Abstract
Hydrogen has attracted attention as an alternative fuel source and as an energy storage medium. However, the flammability of hydrogen at low concentrations makes it a safety concern. Thus, gas concentration measurements are a vital safety issue. Here we present the experimental realization of a palladium thin film cantilever optomechanical hydrogen gas sensor. We measured the instantaneous shape of the cantilever to nanometer-level accuracy using diffraction phase microscopy. Thus, we were able to quantify changes in the curvature of the cantilever as a function of hydrogen concentration and observed that the sensor’s minimum detection limit was well below the 250 p.p.m. limit of our test equipment. Using the change in curvature versus the hydrogen curve for calibration, we accurately determined the hydrogen concentrations for a random sequence of exposures. In addition, we calculated the change in film stress as a function of hydrogen concentration and observed a greater sensitivity at lower concentrations.
Original language | English (US) |
---|---|
Article number | 16087 |
Journal | Microsystems and Nanoengineering |
Volume | 3 |
DOIs | |
State | Published - 2017 |
Keywords
- Hydrogen detection
- Imaging and sensing
- Interference microscopy
- Optical sensors
- Optomechanics
- Surface dynamics
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Materials Science (miscellaneous)
- Condensed Matter Physics
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering