TY - GEN
T1 - Real-time scheduling of deferrable electric loads
AU - Subramanian, A.
AU - Garcia, M.
AU - Dominguez-Garcia, A.
AU - Callaway, D.
AU - Poolla, K.
AU - Varaiya, P.
PY - 2012
Y1 - 2012
N2 - We consider a collection of distributed energy resources [DERs] such as electric vehicles and thermostatically controlled loads. These resources are flexible: they require delivery of a certain total energy over a specified service interval. This flexibility can facilitate the integration of renewable generation by absorbing variability, and reducing the reserve capacity and reserve energy requirements. We first model the energy needs of these resources as tasks, parameterized by arrival time, departure time, energy requirement, and maximum allowable servicing power. We consider the problem of servicing these resources by allocating available power using real-time scheduling policies. The available generation consists of a mix of renewable energy [from utility-scale wind-farms or distributed rooftop photovoltaics], and load-following reserves. Reserve capacity is purchased in advance, but reserve energy use must be scheduled in real-time to meet the energy requirements of the resources. We show that there does not exist a causal optimal scheduling policy that respects servicing power constraints. We then present three heuristic causal scheduling policies: Earliest Deadline First [EDF], Least Laxity First [LLF], and Receding Horizon Control [RHC]. We show that EDF is optimal in the absence of power constraints. We explore, via simulation studies, the performance of these three scheduling policies in the metrics of required reserve energy and reserve capacity.
AB - We consider a collection of distributed energy resources [DERs] such as electric vehicles and thermostatically controlled loads. These resources are flexible: they require delivery of a certain total energy over a specified service interval. This flexibility can facilitate the integration of renewable generation by absorbing variability, and reducing the reserve capacity and reserve energy requirements. We first model the energy needs of these resources as tasks, parameterized by arrival time, departure time, energy requirement, and maximum allowable servicing power. We consider the problem of servicing these resources by allocating available power using real-time scheduling policies. The available generation consists of a mix of renewable energy [from utility-scale wind-farms or distributed rooftop photovoltaics], and load-following reserves. Reserve capacity is purchased in advance, but reserve energy use must be scheduled in real-time to meet the energy requirements of the resources. We show that there does not exist a causal optimal scheduling policy that respects servicing power constraints. We then present three heuristic causal scheduling policies: Earliest Deadline First [EDF], Least Laxity First [LLF], and Receding Horizon Control [RHC]. We show that EDF is optimal in the absence of power constraints. We explore, via simulation studies, the performance of these three scheduling policies in the metrics of required reserve energy and reserve capacity.
UR - http://www.scopus.com/inward/record.url?scp=84869450998&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869450998&partnerID=8YFLogxK
U2 - 10.1109/acc.2012.6315670
DO - 10.1109/acc.2012.6315670
M3 - Conference contribution
AN - SCOPUS:84869450998
SN - 9781457710957
T3 - Proceedings of the American Control Conference
SP - 3643
EP - 3650
BT - 2012 American Control Conference, ACC 2012
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2012 American Control Conference, ACC 2012
Y2 - 27 June 2012 through 29 June 2012
ER -