Abstract
Real-time interferometer synthetic aperture microscopy is exhibiting several advantages with high resolution imaging of biological specimens. The technique has emerged in the form of solutions of the inverse scattering problem (ISP) for broadband optical microscopy (ISAM). The technique enables reconstruction of the regions of the samples simultaneously with spatially uniform resolution by eliminating the effects of the beam spreading that limit the ID model. The technique is also reliable to interpret the biomedical images across the entire sample volume with resolution equal to that of the optical coherence topographic image formed at the focus. The method is also capable of capturing raw spectral domain data as a subset of its functionality.
Original language | English |
---|---|
Journal | Optics and Photonics News |
Volume | 19 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2008 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics