Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory

Vladimir Pelmenschikov, James A. Birrell, Cindy C. Pham, Nakul Mishra, Hongxin Wang, Constanze Sommer, Edward Reijerse, Casseday P. Richers, Kenji Tamasaku, Yoshitaka Yoda, Thomas B. Rauchfuss, Wolfgang Lubitz, Stephen P. Cramer

Research output: Contribution to journalArticlepeer-review

Abstract

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.

Original languageEnglish (US)
Pages (from-to)16894-16902
Number of pages9
JournalJournal of the American Chemical Society
Volume139
Issue number46
DOIs
StatePublished - Nov 22 2017

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory'. Together they form a unique fingerprint.

Cite this