TY - GEN
T1 - Reachable volume RRT
AU - McMahon, Troy
AU - Thomas, Shawna
AU - Amato, Nancy M.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/6/29
Y1 - 2015/6/29
N2 - Reachable volumes are a new technique that allows one to efficiently restrict sampling to feasible/reachable regions of the planning space even for high degree of freedom and highly constrained problems. However, they have so far only been applied to graph-based sampling-based planners. In this paper we develop the methodology to apply reachable volumes to tree-based planners such as Rapidly-Exploring Random Trees (RRTs). In particular, we propose a reachable volume RRT called RVRRT that can solve high degree of freedom problems and problems with constraints. To do so, we develop a reachable volume stepping function, a reachable volume expand function, and a distance metric based on these operations. We also present a reachable volume local planner to ensure that local paths satisfy constraints for methods such as PRMs. We show experimentally that RVRRTs can solve constrained problems with as many as 64 degrees of freedom and unconstrained problems with as many as 134 degrees of freedom. RVRRTs can solve problems more efficiently than existing methods, requiring fewer nodes and collision detection calls. We also show that it is capable of solving difficult problems that existing methods cannot.
AB - Reachable volumes are a new technique that allows one to efficiently restrict sampling to feasible/reachable regions of the planning space even for high degree of freedom and highly constrained problems. However, they have so far only been applied to graph-based sampling-based planners. In this paper we develop the methodology to apply reachable volumes to tree-based planners such as Rapidly-Exploring Random Trees (RRTs). In particular, we propose a reachable volume RRT called RVRRT that can solve high degree of freedom problems and problems with constraints. To do so, we develop a reachable volume stepping function, a reachable volume expand function, and a distance metric based on these operations. We also present a reachable volume local planner to ensure that local paths satisfy constraints for methods such as PRMs. We show experimentally that RVRRTs can solve constrained problems with as many as 64 degrees of freedom and unconstrained problems with as many as 134 degrees of freedom. RVRRTs can solve problems more efficiently than existing methods, requiring fewer nodes and collision detection calls. We also show that it is capable of solving difficult problems that existing methods cannot.
UR - http://www.scopus.com/inward/record.url?scp=84938250456&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938250456&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2015.7139607
DO - 10.1109/ICRA.2015.7139607
M3 - Conference contribution
AN - SCOPUS:84938250456
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 2977
EP - 2984
BT - 2015 IEEE International Conference on Robotics and Automation, ICRA 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Y2 - 26 May 2015 through 30 May 2015
ER -