Abstract
Pattern formation in Rayleigh-Bénard convection in a large-aspect-ratio cylinder with a radial ramp in the plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand the pattern wave number. Our results suggest that the mean flow, generated by amplitude gradients, plays an important role in the roll compression observed as the control parameter is increased. Near threshold, the mean flow has a quadrupole dependence with a single vortex in each quadrant while away from threshold the mean flow exhibits an octupole dependence with a counterrotating pair of vortices in each quadrant. This is confirmed analytically using the amplitude equation and Cross-Newell mean flow equation. By performing numerical experiments, the large scale counterflow is also found to aid in the roll compression away from threshold but to a much lesser degree. Our results yield an understanding of the pattern wave numbers observed in experiment away from threshold and suggest that near threshold the mean flow and large scale counterflow are not responsible for the observed shift to smaller than critical wave numbers.
Original language | English (US) |
---|---|
Pages (from-to) | 9 |
Number of pages | 1 |
Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
Volume | 66 |
Issue number | 4 |
DOIs | |
State | Published - Oct 21 2002 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics