TY - GEN
T1 - Ravel
T2 - Symposium on Software Defined Networking (SDN) Research, SOSR 2016
AU - Wang, Anduo
AU - Mei, Xueyuan
AU - Croft, Jason
AU - Caesar, Matthew
AU - Godfrey, Brighten
N1 - Publisher Copyright:
© 2016 ACM.
PY - 2016/3/14
Y1 - 2016/3/14
N2 - SDN's logically centralized control provides an insertion point for programming the network. While it is generally agreed that higherlevel abstractions are needed to make that programming easy, there is little consensus on what are the "right" abstractions. Indeed, as SDN moves beyond its initial specialized deployments to broader use cases, it is likely that network control applications will require diverse abstractions that evolve over time. To this end, we champion a perspective that SDN control fundamentally revolves around data representation. We discard any application-specific structure that might be outgrown by new demands. Instead, we adopt a plain data representation of the entire network - network topology, forwarding, and control applications - and seek a universal data language that allows application programmers to transform the primitive representation into any high-level representations presented to applications or network operators. Driven by this insight, we present a system, Ravel, that implements an entire SDN network control infrastructure within a standard SQL database. In Ravel, network abstractions take the form of user-defined SQL views expressed by SQL queries that can be added on the fly. A key challenge in realizing this approach is to orchestrate multiple simultaneous abstractions that collectively affect the same underlying data. To achieve this, Ravel enhances the database with novel data integration mechanisms that merge the multiple views into a coherent forwarding behavior. Moreover, Ravel is exposed to applications through the one simple, familiar and highly interoperable SQL interface. While this is an ambitious long-term goal, our prototype built on the PostgreSQL database exhibits promising performance even for large scale networks.
AB - SDN's logically centralized control provides an insertion point for programming the network. While it is generally agreed that higherlevel abstractions are needed to make that programming easy, there is little consensus on what are the "right" abstractions. Indeed, as SDN moves beyond its initial specialized deployments to broader use cases, it is likely that network control applications will require diverse abstractions that evolve over time. To this end, we champion a perspective that SDN control fundamentally revolves around data representation. We discard any application-specific structure that might be outgrown by new demands. Instead, we adopt a plain data representation of the entire network - network topology, forwarding, and control applications - and seek a universal data language that allows application programmers to transform the primitive representation into any high-level representations presented to applications or network operators. Driven by this insight, we present a system, Ravel, that implements an entire SDN network control infrastructure within a standard SQL database. In Ravel, network abstractions take the form of user-defined SQL views expressed by SQL queries that can be added on the fly. A key challenge in realizing this approach is to orchestrate multiple simultaneous abstractions that collectively affect the same underlying data. To achieve this, Ravel enhances the database with novel data integration mechanisms that merge the multiple views into a coherent forwarding behavior. Moreover, Ravel is exposed to applications through the one simple, familiar and highly interoperable SQL interface. While this is an ambitious long-term goal, our prototype built on the PostgreSQL database exhibits promising performance even for large scale networks.
KW - Programming Abstraction
KW - SQL Database
KW - Software-Defined Networks
KW - Views
UR - http://www.scopus.com/inward/record.url?scp=84982798810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982798810&partnerID=8YFLogxK
U2 - 10.1145/2890955.2890970
DO - 10.1145/2890955.2890970
M3 - Conference contribution
AN - SCOPUS:84982798810
T3 - Symposium on Software Defined Networking (SDN) Research, SOSR 2016
BT - Symposium on Software Defined Networking (SDN) Research, SOSR 2016
PB - Association for Computing Machinery
Y2 - 14 March 2016 through 15 March 2016
ER -