Rat bone properties and their relationship to gait during growth

Research output: Contribution to journalArticle

Abstract

Allometric relationships have been studied over different Orders of mammals to understand how bone accommodates the mechanical demands associated with increasing mass. However, less attention has been given to the scaling of bone within a single lifetime. We aimed to determine how bone morphology and tissue density are related to (1) bending and compressive strength, and (2) gait dynamics. Longitudinal in vivo computed tomography of the hindlimbs and gait data were collected from female rats (n=5, age 8–20 weeks). Cross-sectional properties and tissue density were measured at the diaphysis, distal and proximal regions of the tibia and scaling exponents were calculated. Finite element models of the tibia were used to simulate loading during walking using joint forces from inverse dynamics calculation to determine the strain energy density and longitudinal strain at the midshaft. Second moment of area at the diaphysis followed strain similarity-based allometry, while bone area trended towards positive allometry. Strain energy in the diaphysis under transverse loading was lower than axial loading throughout growth. While both axial and transverse loading resulted in bending, tensile strains were mitigated by a change in the neutral axis and resulted in overall lower longitudinal tensile strains. The tissue density and cross-sectional properties initially increased and converged by 11 weeks of age and were correlated with changes in ground reaction forces. The scaling analyses imply that rodent tibia is (re)modeled in order to sustain bending at the midshaft during growth. The finite element results and relatively constant density after 10 weeks of age indicate that structural parameters may be the primary determinant of bone strength in the growing rodent tibia. The correlations between bone properties and joint angles imply that the changes in posture may affect bone growth in specific regions.

Original languageEnglish (US)
Article numberjeb203554
JournalJournal of Experimental Biology
Volume222
Issue number18
DOIs
StatePublished - Jan 1 2019

Fingerprint

gait
Gait
bone
bones
tibia
Tibia
Bone and Bones
Diaphyses
rats
Growth
Weight-Bearing
allometry
Rodentia
rodents
rodent
Compressive Strength
bone strength
energy density
Bone Development
Hindlimb

Keywords

  • Biomechanics
  • Density
  • Finite element analysis
  • Ontogenetic growth
  • Scaling
  • Strain
  • Structure

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Cite this

Rat bone properties and their relationship to gait during growth. / Song, Hyunggwi; Polk, John David; Kersh, Mariana Elizabeth.

In: Journal of Experimental Biology, Vol. 222, No. 18, jeb203554, 01.01.2019.

Research output: Contribution to journalArticle

@article{3ec549b53d1c47718eff894da984a78d,
title = "Rat bone properties and their relationship to gait during growth",
abstract = "Allometric relationships have been studied over different Orders of mammals to understand how bone accommodates the mechanical demands associated with increasing mass. However, less attention has been given to the scaling of bone within a single lifetime. We aimed to determine how bone morphology and tissue density are related to (1) bending and compressive strength, and (2) gait dynamics. Longitudinal in vivo computed tomography of the hindlimbs and gait data were collected from female rats (n=5, age 8–20 weeks). Cross-sectional properties and tissue density were measured at the diaphysis, distal and proximal regions of the tibia and scaling exponents were calculated. Finite element models of the tibia were used to simulate loading during walking using joint forces from inverse dynamics calculation to determine the strain energy density and longitudinal strain at the midshaft. Second moment of area at the diaphysis followed strain similarity-based allometry, while bone area trended towards positive allometry. Strain energy in the diaphysis under transverse loading was lower than axial loading throughout growth. While both axial and transverse loading resulted in bending, tensile strains were mitigated by a change in the neutral axis and resulted in overall lower longitudinal tensile strains. The tissue density and cross-sectional properties initially increased and converged by 11 weeks of age and were correlated with changes in ground reaction forces. The scaling analyses imply that rodent tibia is (re)modeled in order to sustain bending at the midshaft during growth. The finite element results and relatively constant density after 10 weeks of age indicate that structural parameters may be the primary determinant of bone strength in the growing rodent tibia. The correlations between bone properties and joint angles imply that the changes in posture may affect bone growth in specific regions.",
keywords = "Biomechanics, Density, Finite element analysis, Ontogenetic growth, Scaling, Strain, Structure",
author = "Hyunggwi Song and Polk, {John David} and Kersh, {Mariana Elizabeth}",
year = "2019",
month = "1",
day = "1",
doi = "10.1242/jeb.203554",
language = "English (US)",
volume = "222",
journal = "Journal of Experimental Biology",
issn = "0022-0949",
publisher = "Company of Biologists Ltd",
number = "18",

}

TY - JOUR

T1 - Rat bone properties and their relationship to gait during growth

AU - Song, Hyunggwi

AU - Polk, John David

AU - Kersh, Mariana Elizabeth

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Allometric relationships have been studied over different Orders of mammals to understand how bone accommodates the mechanical demands associated with increasing mass. However, less attention has been given to the scaling of bone within a single lifetime. We aimed to determine how bone morphology and tissue density are related to (1) bending and compressive strength, and (2) gait dynamics. Longitudinal in vivo computed tomography of the hindlimbs and gait data were collected from female rats (n=5, age 8–20 weeks). Cross-sectional properties and tissue density were measured at the diaphysis, distal and proximal regions of the tibia and scaling exponents were calculated. Finite element models of the tibia were used to simulate loading during walking using joint forces from inverse dynamics calculation to determine the strain energy density and longitudinal strain at the midshaft. Second moment of area at the diaphysis followed strain similarity-based allometry, while bone area trended towards positive allometry. Strain energy in the diaphysis under transverse loading was lower than axial loading throughout growth. While both axial and transverse loading resulted in bending, tensile strains were mitigated by a change in the neutral axis and resulted in overall lower longitudinal tensile strains. The tissue density and cross-sectional properties initially increased and converged by 11 weeks of age and were correlated with changes in ground reaction forces. The scaling analyses imply that rodent tibia is (re)modeled in order to sustain bending at the midshaft during growth. The finite element results and relatively constant density after 10 weeks of age indicate that structural parameters may be the primary determinant of bone strength in the growing rodent tibia. The correlations between bone properties and joint angles imply that the changes in posture may affect bone growth in specific regions.

AB - Allometric relationships have been studied over different Orders of mammals to understand how bone accommodates the mechanical demands associated with increasing mass. However, less attention has been given to the scaling of bone within a single lifetime. We aimed to determine how bone morphology and tissue density are related to (1) bending and compressive strength, and (2) gait dynamics. Longitudinal in vivo computed tomography of the hindlimbs and gait data were collected from female rats (n=5, age 8–20 weeks). Cross-sectional properties and tissue density were measured at the diaphysis, distal and proximal regions of the tibia and scaling exponents were calculated. Finite element models of the tibia were used to simulate loading during walking using joint forces from inverse dynamics calculation to determine the strain energy density and longitudinal strain at the midshaft. Second moment of area at the diaphysis followed strain similarity-based allometry, while bone area trended towards positive allometry. Strain energy in the diaphysis under transverse loading was lower than axial loading throughout growth. While both axial and transverse loading resulted in bending, tensile strains were mitigated by a change in the neutral axis and resulted in overall lower longitudinal tensile strains. The tissue density and cross-sectional properties initially increased and converged by 11 weeks of age and were correlated with changes in ground reaction forces. The scaling analyses imply that rodent tibia is (re)modeled in order to sustain bending at the midshaft during growth. The finite element results and relatively constant density after 10 weeks of age indicate that structural parameters may be the primary determinant of bone strength in the growing rodent tibia. The correlations between bone properties and joint angles imply that the changes in posture may affect bone growth in specific regions.

KW - Biomechanics

KW - Density

KW - Finite element analysis

KW - Ontogenetic growth

KW - Scaling

KW - Strain

KW - Structure

UR - http://www.scopus.com/inward/record.url?scp=85072588742&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072588742&partnerID=8YFLogxK

U2 - 10.1242/jeb.203554

DO - 10.1242/jeb.203554

M3 - Article

C2 - 31492819

AN - SCOPUS:85072588742

VL - 222

JO - Journal of Experimental Biology

JF - Journal of Experimental Biology

SN - 0022-0949

IS - 18

M1 - jeb203554

ER -