Rare-region onset of superconductivity in niobium nanoislands

Malcolm Durkin, Rita Garrido-Menacho, Sarang Gopalakrishnan, Narendra K. Jaggi, Ji Hwan Kwon, Jian Min Zuo, Nadya Mason

Research output: Contribution to journalArticlepeer-review


We report measurements of the superconducting properties of isolated Nb nanoislands (600-2500 nm diameters) and explain their unusual behavior in terms of rare-region onset effects, predicted for random metal-superconductor granular systems [B. Spivak, P. Oreto, and S. A. Kivelson, Phys. Rev. B 77, 214523 (2008)10.1103/PhysRevB.77.214523]. We find that the island Tc is strongly suppressed even at large island diameters, exceeding 1 μm. This behavior is unexpected given that conventional theories of superconductivity in small grains predict suppression of Tc only at a length scale that is two orders of magnitude smaller. In addition, we observe large island-to-island variations in Tc for nominally identical islands. These two experimental observations, coupled with direct measurement of grain distribution using transmission electron microscopy, conductive atomic force microscopy, and computer simulations, provide evidence for our picture in which the onset of superconductivity on an island coincides with the transition temperature of its largest constituent grain, and then spreads to other grains due to proximity coupling.

Original languageEnglish (US)
Article number035409
JournalPhysical Review B
Issue number3
StatePublished - Jan 10 2020

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Rare-region onset of superconductivity in niobium nanoislands'. Together they form a unique fingerprint.

Cite this