@inproceedings{e3b81e60407748e1acbe7125aaf44026,
title = "Rare and Zero-shot Word Sense Disambiguation using Z-Reweighting",
abstract = "Word sense disambiguation (WSD) is a crucial problem in the natural language processing (NLP) community. Current methods achieve decent performance by utilizing supervised learning and large pre-trained language models. However, the imbalanced training dataset leads to poor performance on rare senses and zero-shot senses. There are more training instances and senses for words with top frequency ranks than those with low frequency ranks in the training dataset. We investigate the statistical relation between word frequency rank and word sense number distribution. Based on the relation, we propose a Z-reweighting method on the word level to adjust the training on the imbalanced dataset. The experiments show that the Z-reweighting strategy achieves performance gain on the standard English all words WSD benchmark. Moreover, the strategy can help models generalize better on rare and zero-shot senses.",
author = "Ying Su and Hongming Zhang and Yangqiu Song and Tong Zhang",
note = "Publisher Copyright: {\textcopyright} 2022 Association for Computational Linguistics.; 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 ; Conference date: 22-05-2022 Through 27-05-2022",
year = "2022",
language = "English (US)",
series = "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
publisher = "Association for Computational Linguistics (ACL)",
pages = "4713--4723",
editor = "Smaranda Muresan and Preslav Nakov and Aline Villavicencio",
booktitle = "ACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)",
address = "United States",
}