Rapid repair of titanium particle-induced osteolysis is dramatically reduced in aged mice

Scott G. Kaar, Ashraf A. Ragab, Sarah J. Kaye, B. Alper Kilic, Tetsuya Jinno, Victor M. Goldberg, Yanming Bi, Matthew C. Stewart, John R. Carter, Edward M. Greenfield

Research output: Contribution to journalArticlepeer-review

Abstract

Aseptic loosening is the most common cause of orthopaedic implant failure. This process is thought to be due to osteolysis induced by implant-derived wear particles. Teitelbaum and colleagues have recently developed a promising murine calvarial model of wear particle-induced osteolysis. However, prior to this study, this model had only been assessed qualitatively. We now report a reproducible, quantitative version of the calvarial model of wear particle-induced osteolysis, in which the extent of osteolysis (and repair) of entire parietal bones is assessed by histomorphometry of contact microradiographs. Using this model, we found that the osteolytic response is transient and rapidly repaired in one month old mice. The extent of osteolysis peaks 7 days after particle implantation and returns to baseline levels by 13 days. A similar amount of osteolysis and even more extensive repair is observed when particles are implanted repeatedly. In contrast, aged mice develop progressive osteolysis with no detectable repair. As a result,. 26 month old mice have approximately 17-fold more osteolysis than one month old mice 21 days after particle implantation. Skeletally mature, adult mice (4-16 months old) show an intermediate pattern of response. Osteolysis in these mice peaks at 7 days after particle implantation but it is repaired more slowly than in the one month old mice. Taken together, these results underscore the role of an imbalance between bone resorption and bone formation in the development of aseptic loosening and suggest that agents that stimulate bone formation maybe useful in prevention or treatment of aseptic loosening.

Original languageEnglish (US)
Pages (from-to)171-178
Number of pages8
JournalJournal of Orthopaedic Research
Volume19
Issue number2
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Rapid repair of titanium particle-induced osteolysis is dramatically reduced in aged mice'. Together they form a unique fingerprint.

Cite this