Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

Sabrina N. David, Yao Zhai, Arend M. Van Der Zande, Kevin O'Brien, Pinshane Y. Huang, Daniel A. Chenet, James C. Hone, Xiang Zhang, Xiaobo Yin

Research output: Contribution to journalArticle

Abstract

Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.

Original languageEnglish (US)
Article number111902
JournalApplied Physics Letters
Volume107
Issue number11
DOIs
StatePublished - Sep 14 2015

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers'. Together they form a unique fingerprint.

  • Cite this