TY - GEN
T1 - Ranking-based classification of heterogeneous information networks
AU - Ji, Ming
AU - Han, Jiawei
AU - Danilevsky, Marina
PY - 2011
Y1 - 2011
N2 - It has been recently recognized that heterogeneous information networks composed of multiple types of nodes and links are prevalent in the real world. Both classification and ranking of the nodes (or data objects) in such networks are essential for network analysis. However, so far these approaches have generally been performed separately. In this paper, we combine ranking and classification in order to perform more accurate analysis of a heterogeneous information network. Our intuition is that highly ranked objects within a class should play more important roles in classification. On the other hand, class membership information is important for determining a quality ranking over a dataset. We believe it is therefore beneficial to integrate classification and ranking in a simultaneous, mutually enhancing process, and to this end, propose a novel ranking-based iterative classification framework, called RankClass. Specifically, we build a graph-based ranking model to iteratively compute the ranking distribution of the objects within each class. At each iteration, according to the current ranking results, the graph structure used in the ranking algorithm is adjusted so that the subnetwork corresponding to the specific class is emphasized, while the rest of the network is weakened. As our experiments show, integrating ranking with classification not only generates more accurate classes than the state-of-art classification methods on networked data, but also provides meaningful ranking of objects within each class, serving as a more informative view of the data than traditional classification.
AB - It has been recently recognized that heterogeneous information networks composed of multiple types of nodes and links are prevalent in the real world. Both classification and ranking of the nodes (or data objects) in such networks are essential for network analysis. However, so far these approaches have generally been performed separately. In this paper, we combine ranking and classification in order to perform more accurate analysis of a heterogeneous information network. Our intuition is that highly ranked objects within a class should play more important roles in classification. On the other hand, class membership information is important for determining a quality ranking over a dataset. We believe it is therefore beneficial to integrate classification and ranking in a simultaneous, mutually enhancing process, and to this end, propose a novel ranking-based iterative classification framework, called RankClass. Specifically, we build a graph-based ranking model to iteratively compute the ranking distribution of the objects within each class. At each iteration, according to the current ranking results, the graph structure used in the ranking algorithm is adjusted so that the subnetwork corresponding to the specific class is emphasized, while the rest of the network is weakened. As our experiments show, integrating ranking with classification not only generates more accurate classes than the state-of-art classification methods on networked data, but also provides meaningful ranking of objects within each class, serving as a more informative view of the data than traditional classification.
KW - Classification
KW - Heterogeneous information network
KW - Ranking
UR - http://www.scopus.com/inward/record.url?scp=80052691243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052691243&partnerID=8YFLogxK
U2 - 10.1145/2020408.2020603
DO - 10.1145/2020408.2020603
M3 - Conference contribution
AN - SCOPUS:80052691243
SN - 9781450308137
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 1298
EP - 1306
BT - Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11
PB - Association for Computing Machinery
T2 - 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011
Y2 - 21 August 2011 through 24 August 2011
ER -