Random block-coordinate gradient projection algorithms

Chandramani Singh, Angelia Nedic, R. Srikant

Research output: Chapter in Book/Report/Conference proceedingConference contribution


In this paper, we study gradient projection algorithms based on random partial updates of decision variables. These algorithms generalize random coordinate descent methods. We analyze these algorithms with and without assuming strong convexity of the objective functions. We also present an accelerated version of the algorithm based on Nesterov's two-step gradient method [1]. In each case, we prove convergence and provide a bound on the rate of convergence. We see that the randomized algorithms exhibit similar rates of convergence as their full gradient based deterministic counterparts.

Original languageEnglish (US)
Title of host publication53rd IEEE Conference on Decision and Control,CDC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781479977468
StatePublished - 2014
Externally publishedYes
Event2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, United States
Duration: Dec 15 2014Dec 17 2014

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370


Other2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014
Country/TerritoryUnited States
CityLos Angeles

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization


Dive into the research topics of 'Random block-coordinate gradient projection algorithms'. Together they form a unique fingerprint.

Cite this