Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions

D. Eppstein, J. Erickson

Research output: Contribution to journalArticlepeer-review

Abstract

The straight skeleton of a polygon is a variant of the medial axis introduced by Aichholzer et al., defined by a shrinking process in which each edge of the polygon moves inward at a fixed rate. We construct the straight skeleton of an n-gon with r reflex vertices in time O (n1+ε + n8/11+εr9/11+ε), for any fixed ε > 0, improving the previous best upper bound of O (nr log n). Our algorithm simulates the sequence of collisions between edges and vertices during the shrinking process, using a technique of Eppstein for maintaining extrema of binary functions to reduce the problem of finding successive interactions to two dynamic range query problems: (1) maintain a changing set of triangles in ℝ3 and answer queries asking which triangle is first hit by a query ray, and (2) maintain a changing set of rays in ℝ3 and answer queries asking for the lowest intersection of any ray with a query triangle. We also exploit a novel characterization of the straight skeleton as a lower envelope of triangles in ℝ3. The same time bounds apply to constructing non-self-intersecting offset curves with mitered or beveled corners, and similar methods extend to other problems of simulating collisions and other pairwise interactions among sets of moving objects.

Original languageEnglish (US)
Pages (from-to)569-592
Number of pages24
JournalDiscrete and Computational Geometry
Volume22
Issue number4
DOIs
StatePublished - Dec 1999

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions'. Together they form a unique fingerprint.

Cite this