Raindrop size distribution and evolution

Greg M. McFarquhar

Research output: Chapter in Book/Report/Conference proceedingChapter


Collision-induced breakup of raindrops is assumed to be the main factor controlling the temporal evolution of raindrop size distributions (RSDs). Owing to this mechanism, fragment drops are produced, the size distributions of which have been determined from laboratory measurements of pairs of colliding drops conducted 30 years ago. From these measurements, different representations and parameterizations have been derived. When the earliest parameterizations, based on the results of laboratory collisions of raindrop pairs falling at their terminal velocities, were implemented in numericalmodels, stationary distributions with three peaks in number concentrations were realized. Subsequent studies, using a more physical basis for the parameterized relations or using relations based on computational fluid dynamics models, predicted distributions with two peaks from the opposing effects of breakup and coalescence or coagulation. Despite observations of peaks in RSDs in a variety of locations, there has been little systematic evidence for the occurrence of peaks at the specific diameters predicted by the modeling studies. Because factors other than collision-induced breakup, such as evaporation, size sorting, spontaneous breakup, updrafts, and mixing of rain shafts, also influence RSDs, peaks at specific diameters would not be expected to occur consistently. However, given sufficiently long averaging of observations acquired in heavy rain, some evidence of these peaks might be expected. Thus, there is the need for more observations under conditions of heavy rainfall and for studies to process heavy rain rate data acquired at a variety of locations in a consistent manner.

Original languageEnglish (US)
Title of host publicationRainfall
Subtitle of host publicationState of the Science
PublisherAmerican Geophysical Union
Number of pages12
ISBN (Print)9780875904818
StatePublished - 2010

Publication series

NameGeophysical Monograph Series

ASJC Scopus subject areas

  • Geophysics


Dive into the research topics of 'Raindrop size distribution and evolution'. Together they form a unique fingerprint.

Cite this