QuickSense: Fast and energy-efficient channel sensing for dynamic spectrum access networks

Sungro Yoon, Li Erran Li, Soung Chang Liew, Romit Roy Choudhury, Injong Rhee, Kun Tan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Spectrum sensing, the task of discovering spectrum usage at a given location, is a fundamental problem in dynamic spectrum access networks. While sensing in narrow spectrum bands is well studied in previous work, wideband spectrum sensing is challenging since a wideband radio is generally too expensive and power consuming for mobile devices. Sequential scan, on the other hand, can be very slow if the wide spectrum band contains many narrow channels. In this paper, we propose an analog-filter based spectrum sensing technique, which is much faster than sequential scan and much cheaper than using a wideband radio. The key insight is that, if the sum of energy on a contiguous band is low, we can conclude that all channels in this band are clear with just one measurement. Based on this insight, we design an intelligent search algorithm to minimize the number of total measurements. We prove that the algorithm has the same asymptotic complexity as compressed sensing while our design is much simpler and easily implementable in the real hardware. We show the availability of our technique using hardware devices that include analog filters and analog energy detectors. Our extensive evaluation using real TV 'white space' signals shows the effectiveness of our technique.

Original languageEnglish (US)
Title of host publication2013 Proceedings IEEE INFOCOM 2013
Pages2247-2255
Number of pages9
DOIs
StatePublished - 2013
Externally publishedYes
Event32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013 - Turin, Italy
Duration: Apr 14 2013Apr 19 2013

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X

Other

Other32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013
Country/TerritoryItaly
CityTurin
Period4/14/134/19/13

ASJC Scopus subject areas

  • General Computer Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'QuickSense: Fast and energy-efficient channel sensing for dynamic spectrum access networks'. Together they form a unique fingerprint.

Cite this