Quantitative ultrasound estimates from populations of scatterers with continuous size distributions

Roberto Lavarello, Michael Oelze

Research output: Contribution to journalArticle

Abstract

Although quantitative ultrasound imaging based on backscattering coefficients has proven potential for tissue characterization, the scattering models used in most studies assume distributions of identical scatterers. However, actual tissues may exhibit multiple levels of spatial scales. Therefore, the objective of the present study is to analyze the effects of scatterer size distributions when using a fluid-sphere model for estimating values of effective scatterer diameter (ESD) through both simulations and experiments. For simulations, ESD estimates were obtained at several analysis frequencies between 1 and 40 MHz from populations of scatterers with diameters ranging between 25 and 100 μm, 25 and 50 μm, 50 and 100 μm, and 50 and μ75 m. For sufficiently high analysis frequencies, the ESD estimates obtained through simulations were approximately inversely proportional to frequency and mostly independent of the underlying scatterer size distribution. Asymptotic expressions for the expected ESD estimates at low- and high-frequency limits were derived. Experiments were conducted using two gelatin phantoms with contrast agent spheres ranging in diameter from 30 to 140 μm and 70 to μ140 m, and 5-, 7.5-, 10-, and 13-MHz focused transducers. Not only was the asymptotic behavior of ESD versus frequency estimates observed experimentally, but also the experimental ESD estimates using the 10- and 13-MHz transducers were lower than the smallest scatterers present in the second phantom. These results may have a direct impact on how scatterer size estimates corresponding to specimens with different subresolution spatial scales should be interpreted.

Original languageEnglish (US)
Article number5750096
Pages (from-to)744-753
Number of pages10
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume58
Issue number4
DOIs
StatePublished - Apr 1 2011

ASJC Scopus subject areas

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Quantitative ultrasound estimates from populations of scatterers with continuous size distributions'. Together they form a unique fingerprint.

  • Cite this