TY - JOUR
T1 - Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture
AU - Upadyayula, N.
AU - Wassom, J.
AU - Bohn, M. O.
AU - Rocheford, T. R.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/11
Y1 - 2006/11
N2 - Maize tassel inflorescence architecture is relevant to efficient production of F1 seed and yield performance of F1 hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034-ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344-phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.
AB - Maize tassel inflorescence architecture is relevant to efficient production of F1 seed and yield performance of F1 hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034-ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344-phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.
UR - http://www.scopus.com/inward/record.url?scp=33750735056&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750735056&partnerID=8YFLogxK
U2 - 10.1007/s00122-006-0359-2
DO - 10.1007/s00122-006-0359-2
M3 - Article
C2 - 17061102
AN - SCOPUS:33750735056
SN - 0040-5752
VL - 113
SP - 1395
EP - 1407
JO - Theoretical and Applied Genetics
JF - Theoretical and Applied Genetics
IS - 8
ER -