Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination

Sizhe Liu, Kyle C. Smith

Research output: Contribution to journalArticlepeer-review

Abstract

Electrochemical desalination devices that use redox-active cation intercalation electrodes show promise for desalination of salt-rich water resources with high water recovery and low energy consumption. While previous modeling and experiments used ion-exchange membranes to maximize charge efficiency, here a membrane-free alternative is evaluated to reduce capital cost by using a porous diaphragm to separate Na1+xNiFe(CN)6 electrodes. Two-dimensional porous-electrode modeling shows that, while charge efficiency losses are inherent to a diaphragm-based architecture, charge efficiency values approaching the anion transference number (61% for NaCl) are achievable for diaphragms with sufficiently low salt conductance. Closed-form equations are thereby derived that relate charge efficiency to the non-dimensional Pèclet and Damköhler numbers that enable the selection of current and flow velocity to produce a desired degree-of-desalination. Simulations using these conditions are used to quantify the tradeoffs between energy consumption and salt removal rate for diaphragm-based cells operated at a range of currents. The simulated distributions of reactions are shown to result from the local salt concentration variations within electrodes using diffusion-potential theory. We also simulate the cycling dynamics of various flow configurations and show that flow-through electrodes exceed the degree-of-desalination compared with flow-by and flow-behind configurations due to solution stagnation within electrodes.

Original languageEnglish (US)
Pages (from-to)652-665
Number of pages14
JournalElectrochimica Acta
Volume271
DOIs
StatePublished - May 1 2018

Keywords

  • Capacitive deionization
  • Desalination
  • Intercalation
  • Porous electrode
  • Prussian blue analogue
  • Simulation

ASJC Scopus subject areas

  • General Chemical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination'. Together they form a unique fingerprint.

Cite this