Abstract
Fluctuation Transmission Electron Microscopy (FTEM) has a unique ability to probe topological order on the 1-3nm length scale in diffraction amorphous materials. However, extracting a quantitative description of the order has been challenging. We report that the FTEM covariance, computed at two non-degenerate Bragg reflections, is able to distinguish different regimes of size vs. volume fraction of order. The covariance analysis is general and does not require a material-specific atomistic model. We use a Monte-Carlo approach to compute different regimes of covariance, based on the probability of exciting multiple Bragg reflections when a STEM nanobeam interacts with a volume containing ordered regions in an amorphous matrix. We perform experimental analysis on several sputtered amorphous thin films including a-Si, nitrogen-alloyed GeTe and Ge2Sb2Te5. The samples contain a wide variety of ordered states. Comparison of experimental data with the covariance simulation reveals different regimes of nanoscale topological order.
Original language | English (US) |
---|---|
Pages (from-to) | 95-100 |
Number of pages | 6 |
Journal | Ultramicroscopy |
Volume | 133 |
DOIs | |
State | Published - Oct 2013 |
Keywords
- Fluctuation Transmission Electron Microscopy
- Nanoscale order
- Scattering
- Statistics
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Instrumentation