Quantification of tumor fluorescence during intraoperative optical cancer imaging

Ryan P. Judy, Jane J. Keating, Elizabeth M. DeJesus, Jack X. Jiang, Olugbenga T. Okusanya, Shuming Nie, David E. Holt, Sean P. Arlauckas, Phillip S. Low, E. James Delikatny, Sunil Singhal

Research output: Contribution to journalArticlepeer-review

Abstract

Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR]=6.8±0.6, 2.4±0.3, 2.6±0.1, p=0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1±0.2 vs. 4.3±0.4, p=0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR=41.7±11.5, 5.1±1.8, 4.1±0.9, p=0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR=7.0±3.4 vs. 2.4±0.5, p=0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.

Original languageEnglish (US)
Article number16208
JournalScientific reports
Volume5
DOIs
StatePublished - Nov 2015
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Quantification of tumor fluorescence during intraoperative optical cancer imaging'. Together they form a unique fingerprint.

Cite this