Abstract
Abstract. The goal of this study was to evaluate the accuracy, reproducibility, and efficiency of a 31P magnetic resonance spectroscopic fingerprinting ( 31P-MRSF) method for fast quantification of the forward rate constant of creatine kinase (CK) in mouse hindlimb. The 31P-MRSF method acquired spectroscopic fingerprints using interleaved acquisition of phosphocreatine (PCr) and γATP with ramped flip angles and a saturation scheme sensitive to chemical exchange between PCr and γATP. Parameter estimation was performed by matching the acquired fingerprints to a dictionary of simulated fingerprints generated from the Bloch-McConnell model. The accuracy of 31P-MRSF measurements was compared with the magnetization transfer (MT-MRS) method in mouse hindlimb at 9.4 T (n = 8). The reproducibility of 31P-MRSF was also assessed by repeated measurements. Estimation of the CK rate constant using 31P-MRSF (0.39 ± 0.03 s −1) showed a strong agreement with that using MT-MRS measurements (0.40 ± 0.05 s −1). Variations less than 10% were achieved with 2 min acquisition of 31P-MRSF data. Application of the 31P-MRSF method to mice subjected to an electrical stimulation protocol detected an increase in CK rate constant in response to stimulation-induced muscle contraction. These results demonstrated the potential of the 31P-MRSF framework for rapid, accurate, and reproducible quantification of the chemical exchange rate of CK in vivo.
Original language | English (US) |
---|---|
Article number | e4435 |
Pages (from-to) | e4435 |
Journal | NMR in Biomedicine |
Volume | 34 |
Issue number | 2 |
Early online date | Oct 27 2020 |
DOIs | |
State | Published - Feb 2021 |
Keywords
- P spectroscopy
- creatine kinase activity
- magnetic resonance fingerprinting
- magnetization transfer
ASJC Scopus subject areas
- Molecular Medicine
- Radiology Nuclear Medicine and imaging
- Spectroscopy