TY - GEN
T1 - Qualification of the 3D Thermal Hydraulics Model of the Code System TRACE Based on plant data
AU - Sánchez, Victor Hugo
AU - Jäger, Wadim
AU - Kozlowski, Tomasz
PY - 2008
Y1 - 2008
N2 - The Institute of Reactor Safety is involved in the qualification of best-estimate coupled code systems for reactor safety evaluations since it is a key step toward improving their prediction capability and acceptability. In the frame of the WER-1000 Coolant Transient Benchmark PhaseI the coupled code RELAP5/PARCS has been extensively assessed. The Phase 2 of this benchmark- currently underway- is focused on both multidimensional thermal hydraulics phenomena within the reactor pressure vessel (RPV) such as coolant mixing and core physics. Hence it is an excellent opportunity to qualify the prediction capability of the new coupled code system TRACE/PARCS taking into account plant data obtained in the Kozloduy nuclear power plant unit 6. In addition a lose coupling of CFX with RELAP5 is applied for the posttest calculation of the coolant mixing experiment. The developed multidimensional models of the WER-1000 reactor pressure vessel as well as the performed calculations using these models are described in some detail. The predicted results are in good agreement with the data. It was demonstrated that the chosen 3D-nodalization of the RPV is adequate for the description of the coolant mixing phenomena in a WER-1000 reactor. In addition selected results of the code TRACE/PARCS for a postulated main steam line transient (MSLB) are given. The investigations have shown that the multidimensional neutronics and thermal hydraulic model developed for the RPV of the WER-1000 reactor are well qualified and consequently they are ready for their integration into a overall plant model so that the exercise 3 of the Phase 2 can be investigated as next.
AB - The Institute of Reactor Safety is involved in the qualification of best-estimate coupled code systems for reactor safety evaluations since it is a key step toward improving their prediction capability and acceptability. In the frame of the WER-1000 Coolant Transient Benchmark PhaseI the coupled code RELAP5/PARCS has been extensively assessed. The Phase 2 of this benchmark- currently underway- is focused on both multidimensional thermal hydraulics phenomena within the reactor pressure vessel (RPV) such as coolant mixing and core physics. Hence it is an excellent opportunity to qualify the prediction capability of the new coupled code system TRACE/PARCS taking into account plant data obtained in the Kozloduy nuclear power plant unit 6. In addition a lose coupling of CFX with RELAP5 is applied for the posttest calculation of the coolant mixing experiment. The developed multidimensional models of the WER-1000 reactor pressure vessel as well as the performed calculations using these models are described in some detail. The predicted results are in good agreement with the data. It was demonstrated that the chosen 3D-nodalization of the RPV is adequate for the description of the coolant mixing phenomena in a WER-1000 reactor. In addition selected results of the code TRACE/PARCS for a postulated main steam line transient (MSLB) are given. The investigations have shown that the multidimensional neutronics and thermal hydraulic model developed for the RPV of the WER-1000 reactor are well qualified and consequently they are ready for their integration into a overall plant model so that the exercise 3 of the Phase 2 can be investigated as next.
UR - http://www.scopus.com/inward/record.url?scp=52249097613&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52249097613&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:52249097613
SN - 9781604238716
T3 - Societe Francaise d'Energie Nucleaire - International Congress on Advances in Nuclear Power Plants - ICAPP 2007, "The Nuclear Renaissance at Work"
SP - 1084
EP - 1092
BT - Societe Francaise d'Energie Nucleaire - International Congress on Advances in Nuclear Power Plants - ICAPP 2007, "The Nuclear Renaissance at Work"
T2 - Societe Francaise d'Energie Nucleaire - International Congress on Advances in Nuclear Power Plants - ICAPP 2007, "The Nuclear Renaissance at Work"
Y2 - 13 May 2007 through 18 May 2007
ER -