Quadratic decomposable submodular function minimization

Pan Li, Niao He, Olgica Milenkovic

Research output: Contribution to journalConference articlepeer-review

Abstract

We introduce a new convex optimization problem, termed quadratic decomposable submodular function minimization. The problem is closely related to decomposable submodular function minimization and arises in many learning on graphs and hypergraphs settings, such as graph-based semi-supervised learning and PageRank. We approach the problem via a new dual strategy and describe an objective that may be optimized via random coordinate descent (RCD) methods and projections onto cones. We also establish the linear convergence rate of the RCD algorithm and develop efficient projection algorithms with provable performance guarantees. Numerical experiments in semi-supervised learning on hypergraphs confirm the efficiency of the proposed algorithm and demonstrate the significant improvements in prediction accuracy with respect to state-of-the-art methods.

Original languageEnglish (US)
Pages (from-to)1054-1064
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: Dec 2 2018Dec 8 2018

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Quadratic decomposable submodular function minimization'. Together they form a unique fingerprint.

Cite this