Putidaredoxin Competitively Inhibits Cytochrome b5-Cytochrome P-450cam Association: A Proposed Molecular Model for a Cytochrome P-450cam Electron-Transfer Complex

Patrick S. Stayton, Thomas L. Poulos, Stephen G. Sligar

Research output: Contribution to journalArticlepeer-review


Cytochrome b5 has been genetically engineered to afford a fluorescent derivative capable of monitoring its association with cytochrome P-450cam from Pseudomonas putida [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. In the mutant cytochrome b5, threonine is replaced by a cysteine at position 65 (T65C) and has been labeled with the environmentally sensitive fluorophore acrylodan. In this paper, the physiological P-450cam reductant putidaredoxin, an Fe2S2·Cys4 iron-sulfur protein, is shown to competitively inhibit the cytochrome b5 association, suggesting that cytochrome b5 and putidaredoxin bind to a similar site on the cytochrome P-450cam surface. Since the crystal structures for both cytochrome b5 and cytochrome P-450cam have been solved to high resolution, the complex has been computer modeled, and a good fit was found on the proximal surface of nearest approach to the P-450cam heme prosthetic group. The proposed model includes electrostatic contacts between conserved cytochrome b5 carboxylates Glu-44, Glu-48, Asp-60, and the exposed heme propionate with cytochrome P-450cam basic residues Lys-344, Arg-72, Arg-112, and Arg-364, respectively. Putidaredoxin has similarly been shown to contain a carboxylate-based binding surface, and the current results suggest that if the model is correct, then it also interacts at the proposed site, probably utilizing similar P-450cam electrostatic contacts.

Original languageEnglish (US)
Pages (from-to)8201-8205
Number of pages5
Issue number20
StatePublished - 1989

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Putidaredoxin Competitively Inhibits Cytochrome b<sub>5</sub>-Cytochrome P-450<sub>cam</sub> Association: A Proposed Molecular Model for a Cytochrome P-450<sub>cam</sub> Electron-Transfer Complex'. Together they form a unique fingerprint.

Cite this