TY - JOUR
T1 - Purification and characterization of phosphonoglycans from Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338
AU - Yu, Xiaomin
AU - Price, Neil P.J.
AU - Evans, Bradley S.
AU - Metcalf, William W.
PY - 2014/5
Y1 - 2014/5
N2 - Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate- containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partiallyO-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2- MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partiallyO- methylated galactose residues. Isotopic labeling indicated that theO-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by 31P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 orO-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3- dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pep M-containing gene clusters that are likely to be required for phosphonoglycan synthesis.
AB - Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate- containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partiallyO-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2- MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partiallyO- methylated galactose residues. Isotopic labeling indicated that theO-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by 31P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 orO-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3- dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pep M-containing gene clusters that are likely to be required for phosphonoglycan synthesis.
UR - http://www.scopus.com/inward/record.url?scp=84897510631&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897510631&partnerID=8YFLogxK
U2 - 10.1128/JB.00036-14
DO - 10.1128/JB.00036-14
M3 - Article
C2 - 24584498
AN - SCOPUS:84897510631
SN - 0021-9193
VL - 196
SP - 1768
EP - 1779
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 9
ER -