Pure-Rotational fs/ps CARS measurements of temperature and concentration using a second-harmonic bandwidth-compressed probe

Sean P. Kearney, Daniel J. Scoglietti

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A hybrid fs/ps pure-rotational CARS scheme is demonstrated in the product gases of premixed hydrogren/air and ethylene/air flat flames. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed by a high-energy, frequency-narrow picosecond pulse, generated by sum-frequency mixing of linearly chirped broadband pulses with conjugate temporal phase. Spectral fitting is demonstrated for both shot-averaged and single-laser-shot spectra. Measurement accuracy is quantified by comparison to adiabatic-equilibrium calculations for the hydrogen/air flames, and by comparison to nanosecond CARS measurements for the ethylene/air flames. Temperature-measurement precision is 1-3% and O2/N2 precision is 2-10% based on histograms constructed from 1000 single-shot measurements acquired at a data rate of 1 kHz. These results indicate that hybrid fs/ps rotational CARS is a quantitative tool for kHz-rate combustion temperature/species data.

Original languageEnglish (US)
Title of host publication52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781624102561
StatePublished - 2014
Externally publishedYes
Event52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 - National Harbor, MD, United States
Duration: Jan 13 2014Jan 17 2014

Publication series

Name52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014

Other

Other52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
Country/TerritoryUnited States
CityNational Harbor, MD
Period1/13/141/17/14

ASJC Scopus subject areas

  • Space and Planetary Science
  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Pure-Rotational fs/ps CARS measurements of temperature and concentration using a second-harmonic bandwidth-compressed probe'. Together they form a unique fingerprint.

Cite this