Pure electronic metal-insulator transition at the interface of complex oxides

D. Meyers, Jian Liu, J. W. Freeland, S. Middey, M. Kareev, Jihwan Kwon, J. M. Zuo, Yi De Chuang, J. W. Kim, P. J. Ryan, J. Chakhalian

Research output: Contribution to journalArticlepeer-review


In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.

Original languageEnglish (US)
Article number27934
JournalScientific reports
StatePublished - Jun 21 2016

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Pure electronic metal-insulator transition at the interface of complex oxides'. Together they form a unique fingerprint.

Cite this