PSF model-based reconstruction with sparsity constraint algorithm and application to real-time cardiac MRI

Bo Zhao, Justin P. Haldar, Zhi Pei Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The partially separable function (PSF) model has been successfully used to reconstruct cardiac MR images with high spatiotemporal resolution from sparsely sampled (k,t)-space data. However, the underlying model fitting problem is often illconditioned due to temporal undersampling, and image artifacts can result if reconstruction is based solely on the data consistency constraints. This paper proposes a new method to regularize the inverse problem using sparsity constraints. The method enables both partial separability (or low-rankness) and sparsity constraints to be used simultaneously for high-quality image reconstruction from undersampled (k,t)-space data. The proposed method is described and reconstruction results with cardiac imaging data are presented to illustrate its performance.

Original languageEnglish (US)
Title of host publication2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Pages3390-3393
Number of pages4
DOIs
StatePublished - 2010
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: Aug 31 2010Sep 4 2010

Publication series

Name2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

Other

Other2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Country/TerritoryArgentina
CityBuenos Aires
Period8/31/109/4/10

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Health Informatics

Fingerprint

Dive into the research topics of 'PSF model-based reconstruction with sparsity constraint algorithm and application to real-time cardiac MRI'. Together they form a unique fingerprint.

Cite this