Proximal Deep Structured Models

Shenlong Wang, Sanja Fidler, Raquel Urtasun

Research output: Contribution to journalConference articlepeer-review

Abstract

Many problems in real-world applications involve predicting continuous-valued random variables that are statistically related. In this paper, we propose a powerful deep structured model that is able to learn complex non-linear functions which encode the dependencies between continuous output variables. We show that inference in our model using proximal methods can be efficiently solved as a feed-foward pass of a special type of deep recurrent neural network. We demonstrate the effectiveness of our approach in the tasks of image denoising, depth refinement and optical flow estimation.

Original languageEnglish (US)
Pages (from-to)865-873
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - 2016
Externally publishedYes
Event30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain
Duration: Dec 5 2016Dec 10 2016

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Proximal Deep Structured Models'. Together they form a unique fingerprint.

Cite this