Abstract
Many problems in real-world applications involve predicting continuous-valued random variables that are statistically related. In this paper, we propose a powerful deep structured model that is able to learn complex non-linear functions which encode the dependencies between continuous output variables. We show that inference in our model using proximal methods can be efficiently solved as a feed-foward pass of a special type of deep recurrent neural network. We demonstrate the effectiveness of our approach in the tasks of image denoising, depth refinement and optical flow estimation.
Original language | English (US) |
---|---|
Pages (from-to) | 865-873 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
State | Published - 2016 |
Externally published | Yes |
Event | 30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain Duration: Dec 5 2016 → Dec 10 2016 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing