Provably Bounding Neural Network Preimages

Suhas Kotha, Christopher Brix, Zico Kolter, Krishnamurthy Dvijotham, Huan Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Most work on the formal verification of neural networks has focused on bounding the set of outputs that correspond to a given set of inputs (for example, bounded perturbations of a nominal input). However, many use cases of neural network verification require solving the inverse problem, or over-approximating the set of inputs that lead to certain outputs. We present the INVPROP algorithm for verifying properties over the preimage of a linearly constrained output set, which can be combined with branch-and-bound to increase precision. Contrary to other approaches, our efficient algorithm is GPU-accelerated and does not require a linear programming solver. We demonstrate our algorithm for identifying safe control regions for a dynamical system via backward reachability analysis, verifying adversarial robustness, and detecting out-of-distribution inputs to a neural network. Our results show that in certain settings, we find over-approximations over 2500× tighter than prior work while being 2.5× faster. By strengthening robustness verification with output constraints, we consistently verify more properties than the previous state-of-the-art on multiple benchmarks, including a large model with 167k neurons in VNN-COMP 2023. Our algorithm has been incorporated into the α, β-CROWN verifier, available at https://abcrown.org.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713899921
StatePublished - 2023
Externally publishedYes
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period12/10/2312/16/23

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Provably Bounding Neural Network Preimages'. Together they form a unique fingerprint.

Cite this