Abstract
Bayesian methods are appealing in their flexibility in modeling complex data and ability in capturing uncertainty in parameters. However, when Bayes’ rule does not result in tractable closed-form, most approximate inference algorithms lack either scalability or rigorous guarantees. To tackle this challenge, we propose a simple yet provable algorithm, Particle Mirror Descent (PMD), to iteratively approximate the posterior density. PMD is inspired by stochastic functional mirror descent where one descends in the density space using a small batch of data points at each iteration, and by particle filtering where one uses samples to approximate a function. We prove result of the first kind that, with m particles, PMD provides a posterior density estimator that converges in terms of KL-divergence to the true posterior in rate O(1/√m). We demonstrate competitive empirical performances of PMD compared to several approximate inference algorithms in mixture models, logistic regression, sparse Gaussian processes and latent Dirichlet allocation on large scale datasets.
Original language | English (US) |
---|---|
Pages | 985-994 |
Number of pages | 10 |
State | Published - 2016 |
Externally published | Yes |
Event | 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 - Cadiz, Spain Duration: May 9 2016 → May 11 2016 |
Conference
Conference | 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 |
---|---|
Country/Territory | Spain |
City | Cadiz |
Period | 5/9/16 → 5/11/16 |
ASJC Scopus subject areas
- Artificial Intelligence
- Statistics and Probability