For the autonomous repair of damaged materials, microcapsules are needed that release their contents in response to a variety of physical and chemical phenomena, not just by direct mechanical rupture. Herein we report a general route to programmable microcapsules. This method creates core-shell microcapsules with polymeric shell walls composed of self-immolative polymer networks. The polymers in these networks undergo a head-to-tail depolymerization upon removal of the triggering end group, leading to breakdown of the shell wall and subsequent release of the capsule's liquid interior. We report microcapsules with shell walls bearing both Boc and Fmoc triggering groups. The capsules release their contents only under conditions known to remove these triggering groups; otherwise, they retain their contents under a variety of conditions. In support of the proposed release mechanism, the capsule shell walls were observed to undergo physical cracking upon exposure to the triggering conditions.

Original languageEnglish (US)
Pages (from-to)10266-10268
Number of pages3
JournalJournal of the American Chemical Society
Issue number30
StatePublished - Aug 4 2010

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Programmable microcapsules from self-immolative polymers'. Together they form a unique fingerprint.

Cite this