TY - JOUR
T1 - Progesterone induces porcine sperm release from oviduct glycans in a proteasome-dependent manner
AU - Sharif, Momal
AU - Kerns, Karl
AU - Sutovsky, Peter
AU - Bovin, Nicolai
AU - Miller, David J.
N1 - Publisher Copyright:
© 2021 Society for Reproduction and Fertility
PY - 2021/4
Y1 - 2021/4
N2 - In mammals, the oviduct retains sperm, forming a reservoir from which they are released in synchrony with ovulation. However, the mechanisms underlying sperm release are unclear. Herein, we first examined in greater detail the release of sperm from the oviduct reservoir by sex steroids, and secondly, if the ubiquitin–proteasome system (UPS) mediates this release in vitro. Sperm were allowed to bind to oviductal cells or immobilized oviduct glycans, either bi-SiaLN or a suLeX, and channeled with steroids in the presence or absence of proteasome inhibitors. Previously, we have demonstrated progesterone-induced sperm release from oviduct cells and immobilized glycans in a steroid-specific manner. Herein, we found that the release of sperm from an immobilized oviduct glycan, a six-sialylated branched structure, and from immobilized fibronectin was inhibited by the CatSper blocker NNC 055-0396, akin to the previously reported ability of NNC 055-0396 to inhibit sperm release from another oviduct glycan, sulfated Lewis-X trisaccharide. Thus, CatSper may be required for release of sperm from a variety of adhesion systems. One possible mechanism for sperm release is that glycan receptors on sperm are degraded by proteasomes or shed from the sperm surface by proteasomal degradation. Accordingly, the inhibition of proteasomal degradation blocked sperm release from oviduct cell aggregates both immobilized oviduct glycans as well as fibronectin. In summary, progesterone-induced sperm release requires both active CatSper channels and proteasomal degradation, suggesting that hyperactivation and proteolysis are vital parts of the mechanism by which sperm move from the oviduct reservoir to the site of fertilization.
AB - In mammals, the oviduct retains sperm, forming a reservoir from which they are released in synchrony with ovulation. However, the mechanisms underlying sperm release are unclear. Herein, we first examined in greater detail the release of sperm from the oviduct reservoir by sex steroids, and secondly, if the ubiquitin–proteasome system (UPS) mediates this release in vitro. Sperm were allowed to bind to oviductal cells or immobilized oviduct glycans, either bi-SiaLN or a suLeX, and channeled with steroids in the presence or absence of proteasome inhibitors. Previously, we have demonstrated progesterone-induced sperm release from oviduct cells and immobilized glycans in a steroid-specific manner. Herein, we found that the release of sperm from an immobilized oviduct glycan, a six-sialylated branched structure, and from immobilized fibronectin was inhibited by the CatSper blocker NNC 055-0396, akin to the previously reported ability of NNC 055-0396 to inhibit sperm release from another oviduct glycan, sulfated Lewis-X trisaccharide. Thus, CatSper may be required for release of sperm from a variety of adhesion systems. One possible mechanism for sperm release is that glycan receptors on sperm are degraded by proteasomes or shed from the sperm surface by proteasomal degradation. Accordingly, the inhibition of proteasomal degradation blocked sperm release from oviduct cell aggregates both immobilized oviduct glycans as well as fibronectin. In summary, progesterone-induced sperm release requires both active CatSper channels and proteasomal degradation, suggesting that hyperactivation and proteolysis are vital parts of the mechanism by which sperm move from the oviduct reservoir to the site of fertilization.
UR - http://www.scopus.com/inward/record.url?scp=85103473647&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103473647&partnerID=8YFLogxK
U2 - 10.1530/REP-20-0474
DO - 10.1530/REP-20-0474
M3 - Article
C2 - 33589564
AN - SCOPUS:85103473647
SN - 1470-1626
VL - 161
SP - 449
EP - 457
JO - Reproduction
JF - Reproduction
IS - 4
ER -