Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimocrobial peptide gene expression

Yiorgos Apidianakis, Michael N. Mindrinos, Wenzhong Xiao, Gee W. Lau, Regina L. Baldini, Ronald W. Davis, Laurence G. Rahme

Research output: Contribution to journalArticlepeer-review


Insights into the host factors and mechanisms mediating the primary host responses after pathogen presentation remain limited, due in part to the complexity and genetic intractability of host systems. Here, we employ the model Drosophila melanogaster to dissect and identify early host responses that function in the initiation and progression of Pseudomonas aeruginosa pathogenesis. First, we use immune potentiation and genetic studies to demonstrate that flies mount a heightened defense against the highly virulent P. aeruginosa strain PA14 when first inoculated with strain CF5, which is avirulent in flies; this effect is mediated via the Imd and Toll signaling pathways. Second, we use whole-genome expression profiling to assess and compare the Drosophila early defense responses triggered by the PA14 vs. CF5 strains to identify genes whose expression patterns are different in susceptible vs. resistant host-pathogen interactions, respectively. Our results identify pathogenesis- and defense-specific genes and uncover a previously undescribed mechanism used by P. aeruginosa in the initial stages of its host interaction: suppression of Drosophila defense responses by limiting antimicrobial peptide gene expression. These results provide insights into the genetic factors that mediate or restrict pathogenesis during the early stages of the bacterial-host interaction to advance our understanding of P. aeruginosa-human infections.

Original languageEnglish (US)
Pages (from-to)2573-2578
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number7
StatePublished - Feb 15 2005
Externally publishedYes


  • Drosophila melanogaster
  • Immune potentiation
  • Innate immunity
  • Pathogenesis

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimocrobial peptide gene expression'. Together they form a unique fingerprint.

Cite this