Abstract

Nitric oxide (NO), an intercellular signaling molecule, helps coordinate neuronal network activity. Here we examine NO generation in the Aplysia californica central nervous system using 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent reagent that forms 4,5-diaminofluorescein triazole (DAF-2T) upon reaction with NO. Recognizing that other fluorescence products are formed within the biochemically complex intracellular environment, we validate the observed fluorescence as being from DAF-2T; using both capillary electrophoresis and mass spectrometry we confirm that DAF-2T is formed from tissues and cells exposed to DAF-2 DA. We observe three distinct subcellular distributions of fluorescence in neurons exposed to DAF-2 DA. The first shows uniform fluorescence inside the cell, with these cells being among previously confirmed NO synthase (NOS)-positive regions in the Aplysia cerebral ganglion. The second, seen inside buccal neurons, exhibits point sources of fluorescence, 1.5 ± 0.7 m in diameter. Interestingly, the number of fluorescence puncta increases when the tissue is preincubated with the NOS substrate l-arginine, and they disappear when cells are preexposed to the NOS inhibitor l-nitro-arginine methyl ester (l-NAME), demonstrating that the fluorescence is connected to NOS-dependent NO production. The third distribution type, seen in the R2 neuron, also exhibits fluorescent puncta but only on the cell surface. Fluorescence is also observed in the terminals of cultured bag cell neurons loaded with DAF-2 DA. Surprisingly, fluorescence at the R2 surface and bag cell neuron terminals is not modulated by l-arginine or l-NAME, suggesting that it has a source distinct from the buccal and cerebral ganglion DAF 2T-positive tissues.

Original languageEnglish (US)
Pages (from-to)182-193
Number of pages12
JournalACS Chemical Neuroscience
Volume1
Issue number3
DOIs
StatePublished - Mar 17 2010

Fingerprint

Aplysia
Neurology
Nervous System
Nitric Oxide
Fluorescence
Neurons
Nitric Oxide Synthase
Cheek
Tissue
Ganglia
Arginine
Capillary electrophoresis
Triazoles
Capillary Electrophoresis
Mass spectrometry
Cultured Cells
Mass Spectrometry
Central Nervous System
Molecules

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Cognitive Neuroscience
  • Cell Biology

Cite this

Production of nitric oxide within the aplysia californica nervous system. / Ye, Xiaoying; Xie, Fang; Romanova, Elena V.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

In: ACS Chemical Neuroscience, Vol. 1, No. 3, 17.03.2010, p. 182-193.

Research output: Contribution to journalArticle

@article{f1f27ab614004313b937f59f9a384a87,
title = "Production of nitric oxide within the aplysia californica nervous system",
abstract = "Nitric oxide (NO), an intercellular signaling molecule, helps coordinate neuronal network activity. Here we examine NO generation in the Aplysia californica central nervous system using 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent reagent that forms 4,5-diaminofluorescein triazole (DAF-2T) upon reaction with NO. Recognizing that other fluorescence products are formed within the biochemically complex intracellular environment, we validate the observed fluorescence as being from DAF-2T; using both capillary electrophoresis and mass spectrometry we confirm that DAF-2T is formed from tissues and cells exposed to DAF-2 DA. We observe three distinct subcellular distributions of fluorescence in neurons exposed to DAF-2 DA. The first shows uniform fluorescence inside the cell, with these cells being among previously confirmed NO synthase (NOS)-positive regions in the Aplysia cerebral ganglion. The second, seen inside buccal neurons, exhibits point sources of fluorescence, 1.5 ± 0.7 m in diameter. Interestingly, the number of fluorescence puncta increases when the tissue is preincubated with the NOS substrate l-arginine, and they disappear when cells are preexposed to the NOS inhibitor l-nitro-arginine methyl ester (l-NAME), demonstrating that the fluorescence is connected to NOS-dependent NO production. The third distribution type, seen in the R2 neuron, also exhibits fluorescent puncta but only on the cell surface. Fluorescence is also observed in the terminals of cultured bag cell neurons loaded with DAF-2 DA. Surprisingly, fluorescence at the R2 surface and bag cell neuron terminals is not modulated by l-arginine or l-NAME, suggesting that it has a source distinct from the buccal and cerebral ganglion DAF 2T-positive tissues.",
author = "Xiaoying Ye and Fang Xie and Romanova, {Elena V.} and Rubakhin, {Stanislav S.} and Sweedler, {Jonathan V.}",
year = "2010",
month = "3",
day = "17",
doi = "10.1021/cn900016z",
language = "English (US)",
volume = "1",
pages = "182--193",
journal = "ACS Chemical Neuroscience",
issn = "1948-7193",
publisher = "American Chemical Society",
number = "3",

}

TY - JOUR

T1 - Production of nitric oxide within the aplysia californica nervous system

AU - Ye, Xiaoying

AU - Xie, Fang

AU - Romanova, Elena V.

AU - Rubakhin, Stanislav S.

AU - Sweedler, Jonathan V.

PY - 2010/3/17

Y1 - 2010/3/17

N2 - Nitric oxide (NO), an intercellular signaling molecule, helps coordinate neuronal network activity. Here we examine NO generation in the Aplysia californica central nervous system using 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent reagent that forms 4,5-diaminofluorescein triazole (DAF-2T) upon reaction with NO. Recognizing that other fluorescence products are formed within the biochemically complex intracellular environment, we validate the observed fluorescence as being from DAF-2T; using both capillary electrophoresis and mass spectrometry we confirm that DAF-2T is formed from tissues and cells exposed to DAF-2 DA. We observe three distinct subcellular distributions of fluorescence in neurons exposed to DAF-2 DA. The first shows uniform fluorescence inside the cell, with these cells being among previously confirmed NO synthase (NOS)-positive regions in the Aplysia cerebral ganglion. The second, seen inside buccal neurons, exhibits point sources of fluorescence, 1.5 ± 0.7 m in diameter. Interestingly, the number of fluorescence puncta increases when the tissue is preincubated with the NOS substrate l-arginine, and they disappear when cells are preexposed to the NOS inhibitor l-nitro-arginine methyl ester (l-NAME), demonstrating that the fluorescence is connected to NOS-dependent NO production. The third distribution type, seen in the R2 neuron, also exhibits fluorescent puncta but only on the cell surface. Fluorescence is also observed in the terminals of cultured bag cell neurons loaded with DAF-2 DA. Surprisingly, fluorescence at the R2 surface and bag cell neuron terminals is not modulated by l-arginine or l-NAME, suggesting that it has a source distinct from the buccal and cerebral ganglion DAF 2T-positive tissues.

AB - Nitric oxide (NO), an intercellular signaling molecule, helps coordinate neuronal network activity. Here we examine NO generation in the Aplysia californica central nervous system using 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent reagent that forms 4,5-diaminofluorescein triazole (DAF-2T) upon reaction with NO. Recognizing that other fluorescence products are formed within the biochemically complex intracellular environment, we validate the observed fluorescence as being from DAF-2T; using both capillary electrophoresis and mass spectrometry we confirm that DAF-2T is formed from tissues and cells exposed to DAF-2 DA. We observe three distinct subcellular distributions of fluorescence in neurons exposed to DAF-2 DA. The first shows uniform fluorescence inside the cell, with these cells being among previously confirmed NO synthase (NOS)-positive regions in the Aplysia cerebral ganglion. The second, seen inside buccal neurons, exhibits point sources of fluorescence, 1.5 ± 0.7 m in diameter. Interestingly, the number of fluorescence puncta increases when the tissue is preincubated with the NOS substrate l-arginine, and they disappear when cells are preexposed to the NOS inhibitor l-nitro-arginine methyl ester (l-NAME), demonstrating that the fluorescence is connected to NOS-dependent NO production. The third distribution type, seen in the R2 neuron, also exhibits fluorescent puncta but only on the cell surface. Fluorescence is also observed in the terminals of cultured bag cell neurons loaded with DAF-2 DA. Surprisingly, fluorescence at the R2 surface and bag cell neuron terminals is not modulated by l-arginine or l-NAME, suggesting that it has a source distinct from the buccal and cerebral ganglion DAF 2T-positive tissues.

UR - http://www.scopus.com/inward/record.url?scp=77951732057&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951732057&partnerID=8YFLogxK

U2 - 10.1021/cn900016z

DO - 10.1021/cn900016z

M3 - Article

AN - SCOPUS:77951732057

VL - 1

SP - 182

EP - 193

JO - ACS Chemical Neuroscience

JF - ACS Chemical Neuroscience

SN - 1948-7193

IS - 3

ER -