Process performance of silicon thin-film transfer using laser micro-transfer printing

Ala'a Al-Okaily, Placid Ferreira

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Micro-transfer printing is rapidly emerging as an effective pathway for heterogeneous materials integration. The process transfers pre-fabricated micro- and nano-scale structures, referred to as "ink," from growth donor substrates to functional receiving substrates. As a non-contact pattern transfer method, Laser Micro-Transfer Printing (LMTP) has been introduced to enhance the capabilities of transfer printing technology to be independent of the receiving substrate material, geometry, and preparation. Using micro fabricated square silicon as inks and polydimethylsiloxane (PDMS) as the stamp material. The previous work on the LMTP process focused on experimentally characterizing and modeling the effects of transferred inks' sizes and thicknesses, and laser beam powers on the laser-driven delamination process mechanism. In this paper, several studies are conducted to understand the effects of other process parameters such as stamp post dimensions (size and height), PDMS formulation for the stamp, ink-stamp alignment, and the shape of the transferred silicon inks on the LMTP performance and mechanism. The studies are supported by both experimental data for the laser pulse duration required to initiate the delamination, and thermo-mechanical FEA model predictions of the energy stored at the interface's edges to release the ink (Energy Release Rate (ERR)), stress levels at the delamination crack tip (Stress Intensity Factors (SIFs)), and interfacial temperature. This study, along with previous studies, should help LMTP users to understand the effects of the process parameters on the process performance so as to select optimal operation conditions.

Original languageEnglish (US)
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846445
DOIs
StatePublished - 2014
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: Nov 14 2014Nov 20 2014

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2B

Other

OtherASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
Country/TerritoryCanada
CityMontreal
Period11/14/1411/20/14

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Process performance of silicon thin-film transfer using laser micro-transfer printing'. Together they form a unique fingerprint.

Cite this