### Abstract

The authors examine the numerical solution of an elliptic partial differential equation in order to study the relationship between problem size and architecture. The equation's domain is discretized into n**2 grid points which are divided into partitions and mapped onto the individual processor memories. The relationships among grid size, stencil type, partitioning strategy, processor execution time, and communication network type are quantified. The authors thus determine the optimal number of processors to assign to the solution (and hence the optimal speedup), and identify (1) the smallest grid which fully benefits from using all available processors, (2) the leverage on performance given by increasing processor speed or communication network speed, and (3) the suitability of various architectures for large numerical problems.

Original language | English (US) |
---|---|

Title of host publication | Proceedings of the International Conference on Parallel Processing |

Editors | Sartaj K. Sahni |

Publisher | Pennsylvania State Univ Press |

Pages | 347-354 |

Number of pages | 8 |

ISBN (Print) | 0271006080 |

State | Published - Dec 1 1987 |

Externally published | Yes |

Event | Proc Int Conf Parallel Process 1987 - Universal Park, PA, USA Duration: Aug 17 1987 → Aug 21 1987 |

### Publication series

Name | Proceedings of the International Conference on Parallel Processing |
---|---|

ISSN (Print) | 0190-3918 |

### Other

Other | Proc Int Conf Parallel Process 1987 |
---|---|

City | Universal Park, PA, USA |

Period | 8/17/87 → 8/21/87 |

### Fingerprint

### ASJC Scopus subject areas

- Hardware and Architecture

### Cite this

*Proceedings of the International Conference on Parallel Processing*(pp. 347-354). (Proceedings of the International Conference on Parallel Processing). Pennsylvania State Univ Press.

**PROBLEM SIZE, PARALLEL ARCHITECTURE, AND OPTIMAL SPEEDUP.** / Nicol, David Malcolm; Willard, Frank H.

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution

*Proceedings of the International Conference on Parallel Processing.*Proceedings of the International Conference on Parallel Processing, Pennsylvania State Univ Press, pp. 347-354, Proc Int Conf Parallel Process 1987, Universal Park, PA, USA, 8/17/87.

}

TY - GEN

T1 - PROBLEM SIZE, PARALLEL ARCHITECTURE, AND OPTIMAL SPEEDUP.

AU - Nicol, David Malcolm

AU - Willard, Frank H.

PY - 1987/12/1

Y1 - 1987/12/1

N2 - The authors examine the numerical solution of an elliptic partial differential equation in order to study the relationship between problem size and architecture. The equation's domain is discretized into n**2 grid points which are divided into partitions and mapped onto the individual processor memories. The relationships among grid size, stencil type, partitioning strategy, processor execution time, and communication network type are quantified. The authors thus determine the optimal number of processors to assign to the solution (and hence the optimal speedup), and identify (1) the smallest grid which fully benefits from using all available processors, (2) the leverage on performance given by increasing processor speed or communication network speed, and (3) the suitability of various architectures for large numerical problems.

AB - The authors examine the numerical solution of an elliptic partial differential equation in order to study the relationship between problem size and architecture. The equation's domain is discretized into n**2 grid points which are divided into partitions and mapped onto the individual processor memories. The relationships among grid size, stencil type, partitioning strategy, processor execution time, and communication network type are quantified. The authors thus determine the optimal number of processors to assign to the solution (and hence the optimal speedup), and identify (1) the smallest grid which fully benefits from using all available processors, (2) the leverage on performance given by increasing processor speed or communication network speed, and (3) the suitability of various architectures for large numerical problems.

UR - http://www.scopus.com/inward/record.url?scp=0023589925&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023589925&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:0023589925

SN - 0271006080

T3 - Proceedings of the International Conference on Parallel Processing

SP - 347

EP - 354

BT - Proceedings of the International Conference on Parallel Processing

A2 - Sahni, Sartaj K.

PB - Pennsylvania State Univ Press

ER -