TY - JOUR
T1 - Probing genetic control of swine responses to PRRSV infection
T2 - Current progress of the PRRS host genetics consortium
AU - Lunney, Joan K.
AU - Steibel, Juan Pedro
AU - Reecy, James M.
AU - Fritz, Eric
AU - Rothschild, Max F.
AU - Kerrigan, Maureen
AU - Trible, B.
AU - Rowland, Raymond Rr
N1 - Funding Information:
The Consortium relational database http://www.animal-genome.org/lunney/index.php is the secure data repository for all pig data including parentage information, location and availability of all samples collected on each pig, results of all assays performed on each sample (phenotypic and genotypic information). The database resides on computers located at Iowa State University, which are supported by NRSP8 Bioinformatics funds. All data collected through the project will be available to project members prior to publication and then to general public after original publication. Access to samples and to accumulated data stored in the secure PHGC Database is open to members who contribute materials or data. [Access to PHGC Database is monitored by the USDA ARS maintained Cooperative Research and Development Agreement (CRADA) Material Transfer Agreement (MTA).]
PY - 2011
Y1 - 2011
N2 - Background: Understanding the role of host genetics in resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection, and the effects of PRRS on pig health and related growth, are goals of the PRRS Host Genetics Consortium (PHGC). Methods. The project uses a nursery pig model to assess pig resistance/susceptibility to primary PRRSV infection. To date, 6 groups of 200 crossbred pigs from high health farms were donated by commercial sources. After acclimation, the pigs were infected with PRRSV in a biosecure facility and followed for 42 days post infection (dpi). Blood samples were collected at 0, 4, 7, 10, 14, 21, 28, 35 and 42 dpi for serum and whole blood RNA gene expression analyses; weekly weights were recorded for growth traits. All data have been entered into the PHGC relational database. Genomic DNAs from all PHGC1-6 pigs were prepared and genotyped with the Porcine SNP60 SNPchip. Results: Results have affirmed that all challenged pigs become PRRSV infected with peak viremia being observed between 4-21 dpi. Multivariate statistical analyses of viral load and weight data have identified PHGC pigs in different virus/weight categories. Sera are now being compared for factors involved in recovery from infection, including speed of response and levels of immune cytokines. Genome-wide association studies (GWAS) are underway to identify genes and chromosomal locations that identify PRRS resistant/susceptible pigs and pigs able to maintain growth while infected with PRRSV. Conclusions: Overall, the PHGC project will enable researchers to discover and verify important genotypes and phenotypes that predict resistance/susceptibility to PRRSV infection. The availability of PHGC samples provides a unique opportunity to continue to develop deeper phenotypes on every PRRSV infected pig.
AB - Background: Understanding the role of host genetics in resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection, and the effects of PRRS on pig health and related growth, are goals of the PRRS Host Genetics Consortium (PHGC). Methods. The project uses a nursery pig model to assess pig resistance/susceptibility to primary PRRSV infection. To date, 6 groups of 200 crossbred pigs from high health farms were donated by commercial sources. After acclimation, the pigs were infected with PRRSV in a biosecure facility and followed for 42 days post infection (dpi). Blood samples were collected at 0, 4, 7, 10, 14, 21, 28, 35 and 42 dpi for serum and whole blood RNA gene expression analyses; weekly weights were recorded for growth traits. All data have been entered into the PHGC relational database. Genomic DNAs from all PHGC1-6 pigs were prepared and genotyped with the Porcine SNP60 SNPchip. Results: Results have affirmed that all challenged pigs become PRRSV infected with peak viremia being observed between 4-21 dpi. Multivariate statistical analyses of viral load and weight data have identified PHGC pigs in different virus/weight categories. Sera are now being compared for factors involved in recovery from infection, including speed of response and levels of immune cytokines. Genome-wide association studies (GWAS) are underway to identify genes and chromosomal locations that identify PRRS resistant/susceptible pigs and pigs able to maintain growth while infected with PRRSV. Conclusions: Overall, the PHGC project will enable researchers to discover and verify important genotypes and phenotypes that predict resistance/susceptibility to PRRSV infection. The availability of PHGC samples provides a unique opportunity to continue to develop deeper phenotypes on every PRRSV infected pig.
UR - http://www.scopus.com/inward/record.url?scp=84858249024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858249024&partnerID=8YFLogxK
U2 - 10.1186/1753-6561-5-S4-S30
DO - 10.1186/1753-6561-5-S4-S30
M3 - Article
C2 - 21645311
AN - SCOPUS:84858249024
SN - 1753-6561
VL - 5
JO - BMC Proceedings
JF - BMC Proceedings
IS - SUPPL. 4
M1 - S30
ER -