Probabilistic freeway ramp metering

Negar Mehr, Roberto Horowitz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ramp metering is proved to be an effective strategy for reducing or avoiding freeway traffic congestion. As a result, huge amount of research has been conducted on synthesizing effective ramp metering controls. In the previous works, freeway is assumed to be a deterministic system which is in contrast with the intrinsic stochastic nature and behavior of freeways. Our work focuses on bridging this gap, and we propose a framework for freeway ramp metering in a probabilistic setting. Our algorithm finds onramp flows in a freeway network while treating exogenous vehicular arrivals as random variables with known distributions, allowing for the network arrivals to conform with their stochastic nature. We use sampling techniques in a model predictive control setup to formulate a tractable approximation of our stochastic optimization. Furthermore, we demonstrate how to relax the non-linear constraints of our optimization to create a linear program with an augmented set of constraints. We prove that the solution of our linear program formulation is the same as the solution of the original mixed-integer formulation. We showcase the results of our algorithm on an exemplar freeway network and introduce multiple interesting future research directions that are important and can be pursued solely in a stochastic framework.

Original languageEnglish (US)
Title of host publicationMechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850701
DOIs
StatePublished - 2016
Externally publishedYes
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume2

Other

OtherASME 2016 Dynamic Systems and Control Conference, DSCC 2016
CountryUnited States
CityMinneapolis
Period10/12/1610/14/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Probabilistic freeway ramp metering'. Together they form a unique fingerprint.

Cite this