TY - GEN
T1 - Prize-collecting survivable network design in node-weighted graphs
AU - Chekuri, Chandra
AU - Ene, Alina
AU - Vakilian, Ali
N1 - Funding Information:
Partially supported by NSF grant CCF-1016684. A longer version containing the omitted proofs will be made available on the authors’ webpages.
PY - 2012
Y1 - 2012
N2 - We consider node-weighted network design problems, in particular the survivable network design problem (SNDP) and its prize-collecting version (PC-SNDP). The input consists of a node-weighted undirected graph G = (V,E) and integral connectivity requirements r(st) for each pair of nodes st. The goal is to find a minimum node-weighted subgraph H of G such that, for each pair st, H contains r(st) edge-disjoint paths between s and t. PC-SNDP is a generalization in which the input also includes a penalty π(st) for each pair, and the goal is to find a subgraph H to minimize the sum of the weight of H and the sum of the penalties for all pairs whose connectivity requirements are not fully satisfied by H. Let k = max st r(st) be the maximum requirement. There has been no non-trivial approximation for node-weighted PC-SNDP for k > 1, the main reason being the lack of an LP relaxation based approach for node-weighted SNDP. In this paper we describe multiroute-flow based relaxations for the two problems and obtain approximation algorithms for PC-SNDP through them. The approximation ratios we obtain for PC-SNDP are similar to those that were previously known for SNDP via combinatorial algorithms. Specifically, we obtain an O(k 2 log n)-approximation in general graphs and an O(k 2)-approximation in graphs that exclude a fixed minor. The approximation ratios can be improved by a factor of k but the running times of the algorithms depend polynomially on n k.
AB - We consider node-weighted network design problems, in particular the survivable network design problem (SNDP) and its prize-collecting version (PC-SNDP). The input consists of a node-weighted undirected graph G = (V,E) and integral connectivity requirements r(st) for each pair of nodes st. The goal is to find a minimum node-weighted subgraph H of G such that, for each pair st, H contains r(st) edge-disjoint paths between s and t. PC-SNDP is a generalization in which the input also includes a penalty π(st) for each pair, and the goal is to find a subgraph H to minimize the sum of the weight of H and the sum of the penalties for all pairs whose connectivity requirements are not fully satisfied by H. Let k = max st r(st) be the maximum requirement. There has been no non-trivial approximation for node-weighted PC-SNDP for k > 1, the main reason being the lack of an LP relaxation based approach for node-weighted SNDP. In this paper we describe multiroute-flow based relaxations for the two problems and obtain approximation algorithms for PC-SNDP through them. The approximation ratios we obtain for PC-SNDP are similar to those that were previously known for SNDP via combinatorial algorithms. Specifically, we obtain an O(k 2 log n)-approximation in general graphs and an O(k 2)-approximation in graphs that exclude a fixed minor. The approximation ratios can be improved by a factor of k but the running times of the algorithms depend polynomially on n k.
UR - http://www.scopus.com/inward/record.url?scp=84865282142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865282142&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-32512-0_9
DO - 10.1007/978-3-642-32512-0_9
M3 - Conference contribution
AN - SCOPUS:84865282142
SN - 9783642325113
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 98
EP - 109
BT - Approximation, Randomization, and Combinatorial Optimization
T2 - 15th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2012 and the 16th International Workshop on Randomization and Computation, RANDOM 2012
Y2 - 15 August 2012 through 17 August 2012
ER -