Private Optimization on Networks

Shripad Gade, Nitin H. Vaidya

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper considers a distributed multi-agent optimization problem, with the global objective consisting of the sum of local objective functions of the agents. The agents solve the optimization problem using local computation and communication between adjacent agents in the network. We present two randomized iterative algorithms for distributed optimization. To improve privacy, our algorithms add 'structured' randomization to the information exchanged between the agents. We prove deterministic correctness (in every execution) of the proposed algorithms despite the information being perturbed by noise with non-zero mean. We prove that a special case of a proposed algorithm (called function sharing) preserves privacy of individual polynomial objective functions under a suitable connectivity condition on the network topology.

Original languageEnglish (US)
Title of host publication2018 Annual American Control Conference, ACC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1402-1409
Number of pages8
ISBN (Print)9781538654286
DOIs
StatePublished - Aug 9 2018
Event2018 Annual American Control Conference, ACC 2018 - Milwauke, United States
Duration: Jun 27 2018Jun 29 2018

Publication series

NameProceedings of the American Control Conference
Volume2018-June
ISSN (Print)0743-1619

Other

Other2018 Annual American Control Conference, ACC 2018
CountryUnited States
CityMilwauke
Period6/27/186/29/18

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Private Optimization on Networks'. Together they form a unique fingerprint.

Cite this