TY - GEN
T1 - Privacy-preserving reconstruction of multidimensional data maps in vehicular participatory sensing
AU - Pham, Nam
AU - Ganti, Raghu K.
AU - Uddin, Yusuf S.
AU - Nath, Suman
AU - Abdelzaher, Tarek
PY - 2010/4/26
Y1 - 2010/4/26
N2 - The proliferation of sensors in devices of frequent use, such as mobile phones, offers unprecedented opportunities for forming self-selected communities around shared sensory data pools that enable community specific applications of mutual interest. Such applications have recently been termed participatory sensing. An important category of participatory sensing applications is one that construct maps of different phenomena (e.g., traffic speed, pollution) using vehicular participatory sensing. An example is sharing data from GPS-enabled cell-phones to map traffic or noise patterns. Concerns with data privacy are a key impediment to the proliferation of such applications. This paper presents theoretical foundations, a system implementation, and an experimental evaluation of a perturbation-based mechanism for ensuring privacy of location-tagged participatory sensing data while allowing correct reconstruction of community statistics of interest (computed from shared perturbed data). The system is applied to construct accurate traffic speed maps in a small campus town from shared GPS data of participating vehicles, where the individual vehicles are allowed to "lie" about their actual location and speed at all times. An extensive evaluation demonstrates the efficacy of the approach in concealing multi-dimensional, correlated, time-series data while allowing for accurate reconstruction of spatial statistics.
AB - The proliferation of sensors in devices of frequent use, such as mobile phones, offers unprecedented opportunities for forming self-selected communities around shared sensory data pools that enable community specific applications of mutual interest. Such applications have recently been termed participatory sensing. An important category of participatory sensing applications is one that construct maps of different phenomena (e.g., traffic speed, pollution) using vehicular participatory sensing. An example is sharing data from GPS-enabled cell-phones to map traffic or noise patterns. Concerns with data privacy are a key impediment to the proliferation of such applications. This paper presents theoretical foundations, a system implementation, and an experimental evaluation of a perturbation-based mechanism for ensuring privacy of location-tagged participatory sensing data while allowing correct reconstruction of community statistics of interest (computed from shared perturbed data). The system is applied to construct accurate traffic speed maps in a small campus town from shared GPS data of participating vehicles, where the individual vehicles are allowed to "lie" about their actual location and speed at all times. An extensive evaluation demonstrates the efficacy of the approach in concealing multi-dimensional, correlated, time-series data while allowing for accurate reconstruction of spatial statistics.
UR - http://www.scopus.com/inward/record.url?scp=77951104466&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951104466&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-11917-0_8
DO - 10.1007/978-3-642-11917-0_8
M3 - Conference contribution
AN - SCOPUS:77951104466
SN - 3642119166
SN - 9783642119163
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 114
EP - 130
BT - Wireless Sensor Networks - 7th European Conference, EWSN 2010, Proceedings
T2 - 7th European Conference on Wireless Sensor Networks, EWSN 2010
Y2 - 17 February 2010 through 19 February 2010
ER -