Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance

Zhihui Zeng, Gang Wang, Brendan F. Wolan, Na Wu, Changxian Wang, Shanyu Zhao, Shengying Yue, Bin Li, Weidong He, Jiurong Liu, Joseph W. Lyding

Research output: Contribution to journalArticlepeer-review

Abstract

Ultrathin, lightweight, and flexible aligned single-walled carbon nanotube (SWCNT) films are fabricated by a facile, environmentally friendly, and scalable printing methodology. The aligned pattern and outstanding intrinsic properties render “metal-like” thermal conductivity of the SWCNT films, as well as excellent mechanical strength, flexibility, and hydrophobicity. Further, the aligned cellular microstructure promotes the electromagnetic interference (EMI) shielding ability of the SWCNTs, leading to excellent shielding effectiveness (SE) of ~ 39 to 90 dB despite a density of only ~ 0.6 g cm−3 at thicknesses of merely 1.5–24 µm, respectively. An ultrahigh thickness-specific SE of 25 693 dB mm−1 and an unprecedented normalized specific SE of 428 222 dB cm2 g−1 are accomplished by the freestanding SWCNT films, significantly surpassing previously reported shielding materials. In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz, the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation, chemical (acid/alkali/organic solvent) corrosion, and high-/low-temperature environments. The novel printed SWCNT films offer significant potential for practical applications in the aerospace, defense, precision components, and smart wearable electronics industries.[Figure not available: see fulltext.]

Original languageEnglish (US)
Article number179
JournalNano-Micro Letters
Volume14
Issue number1
DOIs
StatePublished - Dec 2022
Externally publishedYes

Keywords

  • Aligned film
  • Electromagnetic interference shielding
  • Flexible
  • Lightweight
  • Single-walled carbon nanotube
  • Thermal conductivity

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance'. Together they form a unique fingerprint.

Cite this