Preventing cascading failures in microgrids with one-sided support vector machines

Matt Wytock, Srinivasa Salapaka, Murti Salapaka

Research output: Contribution to journalConference article

Abstract

Microgrids formed by a network of power sources and power consumers yield significant advantages over the conventional power grid including proximity of power consumption to power generation, distributed generation, resiliency against wide area blackouts and ease of incorporation of renewable energy sources. On the other hand, unlike the conventional grid, microgrids are compliant where a single load or a single generation unit can often form a significant fraction of the total generation capacity. Here large excursions from the nominal operating conditions are possible motivating the need for safety mechanisms which isolate power electronic equipment from damage. Breakers serve the purpose of protecting equipment from surge conditions by shutting off, for example, generation units. However in microgrids, a loss of a single generation unit can have catastrophic impact on the viability of the entire system. Here settings on breakers cannot be chosen too conservatively to protect the equipment at the expense of system viability or too liberally which will result in equipment damage. The ensuing problem of striking a suitable compromise tends to be combinatoric in nature due to numerous states of breakers which is further exacerbated by an uncertain load profile and nonlinear nature of system dynamics. In this article we provide a methodology to determine current thresholds and guard times, the time interval when current is allowed to exceed threshold value, for each inverter for fail-safe operation of microgrid. We employ a machine learning approach to address the problem where we first demonstrate that conventional support vector machine (SVM) methodology does not yield a satisfactory solution. We then develop a one-sided SVM method and generalize it to yield nonlinear support boundaries which captures the need for fail-safe operation against system blackouts while protecting equipment. A simulation engine is developed to model a real microgrid which is used to generate data for assessing and guiding our approach.

Original languageEnglish (US)
Article number7039892
Pages (from-to)3252-3258
Number of pages7
JournalProceedings of the IEEE Conference on Decision and Control
Volume2015-February
Issue numberFebruary
DOIs
StatePublished - Jan 1 2014
Event2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, United States
Duration: Dec 15 2014Dec 17 2014

Fingerprint

Cascading Failure
Microgrid
Support vector machines
Support Vector Machine
Viability
Unit
Damage
Distributed power generation
Grid
Distributed Generation
Resiliency
Power electronics
Power Electronics
Renewable Energy
Methodology
Excursion
Surge
Power generation
Learning systems
Inverter

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Cite this

Preventing cascading failures in microgrids with one-sided support vector machines. / Wytock, Matt; Salapaka, Srinivasa; Salapaka, Murti.

In: Proceedings of the IEEE Conference on Decision and Control, Vol. 2015-February, No. February, 7039892, 01.01.2014, p. 3252-3258.

Research output: Contribution to journalConference article

@article{89da657d1de84497b8567a0f29d1b9b9,
title = "Preventing cascading failures in microgrids with one-sided support vector machines",
abstract = "Microgrids formed by a network of power sources and power consumers yield significant advantages over the conventional power grid including proximity of power consumption to power generation, distributed generation, resiliency against wide area blackouts and ease of incorporation of renewable energy sources. On the other hand, unlike the conventional grid, microgrids are compliant where a single load or a single generation unit can often form a significant fraction of the total generation capacity. Here large excursions from the nominal operating conditions are possible motivating the need for safety mechanisms which isolate power electronic equipment from damage. Breakers serve the purpose of protecting equipment from surge conditions by shutting off, for example, generation units. However in microgrids, a loss of a single generation unit can have catastrophic impact on the viability of the entire system. Here settings on breakers cannot be chosen too conservatively to protect the equipment at the expense of system viability or too liberally which will result in equipment damage. The ensuing problem of striking a suitable compromise tends to be combinatoric in nature due to numerous states of breakers which is further exacerbated by an uncertain load profile and nonlinear nature of system dynamics. In this article we provide a methodology to determine current thresholds and guard times, the time interval when current is allowed to exceed threshold value, for each inverter for fail-safe operation of microgrid. We employ a machine learning approach to address the problem where we first demonstrate that conventional support vector machine (SVM) methodology does not yield a satisfactory solution. We then develop a one-sided SVM method and generalize it to yield nonlinear support boundaries which captures the need for fail-safe operation against system blackouts while protecting equipment. A simulation engine is developed to model a real microgrid which is used to generate data for assessing and guiding our approach.",
author = "Matt Wytock and Srinivasa Salapaka and Murti Salapaka",
year = "2014",
month = "1",
day = "1",
doi = "10.1109/CDC.2014.7039892",
language = "English (US)",
volume = "2015-February",
pages = "3252--3258",
journal = "Proceedings of the IEEE Conference on Decision and Control",
issn = "0191-2216",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "February",

}

TY - JOUR

T1 - Preventing cascading failures in microgrids with one-sided support vector machines

AU - Wytock, Matt

AU - Salapaka, Srinivasa

AU - Salapaka, Murti

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Microgrids formed by a network of power sources and power consumers yield significant advantages over the conventional power grid including proximity of power consumption to power generation, distributed generation, resiliency against wide area blackouts and ease of incorporation of renewable energy sources. On the other hand, unlike the conventional grid, microgrids are compliant where a single load or a single generation unit can often form a significant fraction of the total generation capacity. Here large excursions from the nominal operating conditions are possible motivating the need for safety mechanisms which isolate power electronic equipment from damage. Breakers serve the purpose of protecting equipment from surge conditions by shutting off, for example, generation units. However in microgrids, a loss of a single generation unit can have catastrophic impact on the viability of the entire system. Here settings on breakers cannot be chosen too conservatively to protect the equipment at the expense of system viability or too liberally which will result in equipment damage. The ensuing problem of striking a suitable compromise tends to be combinatoric in nature due to numerous states of breakers which is further exacerbated by an uncertain load profile and nonlinear nature of system dynamics. In this article we provide a methodology to determine current thresholds and guard times, the time interval when current is allowed to exceed threshold value, for each inverter for fail-safe operation of microgrid. We employ a machine learning approach to address the problem where we first demonstrate that conventional support vector machine (SVM) methodology does not yield a satisfactory solution. We then develop a one-sided SVM method and generalize it to yield nonlinear support boundaries which captures the need for fail-safe operation against system blackouts while protecting equipment. A simulation engine is developed to model a real microgrid which is used to generate data for assessing and guiding our approach.

AB - Microgrids formed by a network of power sources and power consumers yield significant advantages over the conventional power grid including proximity of power consumption to power generation, distributed generation, resiliency against wide area blackouts and ease of incorporation of renewable energy sources. On the other hand, unlike the conventional grid, microgrids are compliant where a single load or a single generation unit can often form a significant fraction of the total generation capacity. Here large excursions from the nominal operating conditions are possible motivating the need for safety mechanisms which isolate power electronic equipment from damage. Breakers serve the purpose of protecting equipment from surge conditions by shutting off, for example, generation units. However in microgrids, a loss of a single generation unit can have catastrophic impact on the viability of the entire system. Here settings on breakers cannot be chosen too conservatively to protect the equipment at the expense of system viability or too liberally which will result in equipment damage. The ensuing problem of striking a suitable compromise tends to be combinatoric in nature due to numerous states of breakers which is further exacerbated by an uncertain load profile and nonlinear nature of system dynamics. In this article we provide a methodology to determine current thresholds and guard times, the time interval when current is allowed to exceed threshold value, for each inverter for fail-safe operation of microgrid. We employ a machine learning approach to address the problem where we first demonstrate that conventional support vector machine (SVM) methodology does not yield a satisfactory solution. We then develop a one-sided SVM method and generalize it to yield nonlinear support boundaries which captures the need for fail-safe operation against system blackouts while protecting equipment. A simulation engine is developed to model a real microgrid which is used to generate data for assessing and guiding our approach.

UR - http://www.scopus.com/inward/record.url?scp=84988302689&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84988302689&partnerID=8YFLogxK

U2 - 10.1109/CDC.2014.7039892

DO - 10.1109/CDC.2014.7039892

M3 - Conference article

AN - SCOPUS:84988302689

VL - 2015-February

SP - 3252

EP - 3258

JO - Proceedings of the IEEE Conference on Decision and Control

JF - Proceedings of the IEEE Conference on Decision and Control

SN - 0191-2216

IS - February

M1 - 7039892

ER -