PReP: Path-based relevance from a probabilistic perspective in heterogeneous information networks

Yu Shi, Po Wei Chan, Honglei Zhuang, Huan Gui, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As a powerful representation paradigm for networked and multi-typed data, the heterogeneous information network (HIN) is ubiquitous. Meanwhile, defining proper relevance measures has always been a fundamental problem and of great pragmatic importance for network mining tasks. Inspired by our probabilistic interpretation of existing path-based relevance measures, we propose to study HIN relevance from a probabilistic perspective. We also identify, from real-world data, and propose to model cross-meta-path synergy, which is a characteristic important for defining path-based HIN relevance and has not been modeled by existing methods. A generative model is established to derive a novel path-based relevance measure, which is data-driven and tailored for each HIN. We develop an inference algorithm to find the maximum a posteriori (MAP) estimate of the model parameters, which entails non-trivial tricks. Experiments on two real-world datasets demonstrate the effectiveness of the proposed model and relevance measure.

Original languageEnglish (US)
Title of host publicationKDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages425-434
Number of pages10
ISBN (Electronic)9781450348874
DOIs
StatePublished - Aug 13 2017
Event23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017 - Halifax, Canada
Duration: Aug 13 2017Aug 17 2017

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F129685

Other

Other23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017
CountryCanada
CityHalifax
Period8/13/178/17/17

Keywords

  • Graph mining
  • Heterogeneous information networks
  • Meta-paths
  • Relevance measures

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'PReP: Path-based relevance from a probabilistic perspective in heterogeneous information networks'. Together they form a unique fingerprint.

Cite this