TY - JOUR
T1 - Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector
AU - Meng, L. J.
AU - Tan, J. W.
AU - Spartiotis, K.
AU - Schulman, T.
PY - 2009/6/11
Y1 - 2009/6/11
N2 - In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm×4.4 cm, which is pixelated into 128×128 square pixels with a pitch size of 350 μm×350 μm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm×2.2 cm×1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32×64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.
AB - In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm×4.4 cm, which is pixelated into 128×128 square pixels with a pitch size of 350 μm×350 μm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm×2.2 cm×1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32×64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.
KW - CdTe
KW - Energy-resolved photon counting
KW - Gamma ray imaging
UR - http://www.scopus.com/inward/record.url?scp=65649128975&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65649128975&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2009.02.043
DO - 10.1016/j.nima.2009.02.043
M3 - Article
C2 - 28260825
AN - SCOPUS:65649128975
SN - 0168-9002
VL - 604
SP - 548
EP - 554
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
IS - 3
ER -