TY - JOUR
T1 - Predicting participant compliance with fitness tracker wearing and ecological momentary assessment protocols in information workers
T2 - Observational study
AU - Martinez, Gonzalo J.
AU - Mattingly, Stephen M.
AU - Robles-Granda, Pablo
AU - Saha, Koustuv
AU - Sirigiri, Anusha
AU - Young, Jessica
AU - Chawla, Nitesh
AU - de Choudhury, Munmun
AU - D'Mello, Sidney
AU - Mark, Gloria
AU - Striegel, Aaron
N1 - Funding Information:
This paper is based on work supported in part by the Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity (IARPA), via IARPA contract number 2017-17042800007. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Office of the Director of National Intelligence, IARPA, or the US government. The US government is authorized to reproduce and distribute reprints for governmental purposes, notwithstanding any copyright annotation therein.
Publisher Copyright:
© Gonzalo J Martinez, Stephen M Mattingly, Pablo Robles-Granda, Koustuv Saha, Anusha Sirigiri, Jessica Young, Nitesh Chawla, Munmun De Choudhury, Sidney D'Mello, Gloria Mark, Aaron Striegel. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 12.11.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
PY - 2021/11
Y1 - 2021/11
N2 - Background: Studies that use ecological momentary assessments (EMAs) or wearable sensors to track numerous attributes, such as physical activity, sleep, and heart rate, can benefit from reductions in missing data. Maximizing compliance is one method of reducing missing data to increase the return on the heavy investment of time and money into large-scale studies. Objective: This paper aims to identify the extent to which compliance can be prospectively predicted from individual attributes and initial compliance. Methods: We instrumented 757 information workers with fitness trackers for 1 year and conducted EMAs in the first 56 days of study participation as part of an observational study. Their compliance with the EMA and fitness tracker wearing protocols was analyzed. Overall, 31 individual characteristics (eg, demographics and personalities) and behavioral variables (eg, early compliance and study portal use) were considered, and 14 variables were selected to create beta regression models for predicting compliance with EMAs 56 days out and wearable compliance 1 year out. We surveyed study participation and correlated the results with compliance. Results: Our modeling indicates that 16% and 25% of the variance in EMA compliance and wearable compliance, respectively, could be explained through a survey of demographics and personality in a held-out sample. The likelihood of higher EMA and wearable compliance was associated with being older (EMA: odds ratio [OR] 1.02, 95% CI 1.00-1.03; wearable: OR 1.02, 95% CI 1.01-1.04), speaking English as a first language (EMA: OR 1.38, 95% CI 1.05-1.80; wearable: OR 1.39, 95% CI 1.05-1.85), having had a wearable before joining the study (EMA: OR 1.25, 95% CI 1.04-1.51; wearable: OR 1.50, 95% CI 1.23-1.83), and exhibiting conscientiousness (EMA: OR 1.25, 95% CI 1.04-1.51; wearable: OR 1.34, 95% CI 1.14-1.58). Compliance was negatively associated with exhibiting extraversion (EMA: OR 0.74, 95% CI 0.64-0.85; wearable: OR 0.67, 95% CI 0.57-0.78) and having a supervisory role (EMA: OR 0.65, 95% CI 0.54-0.79; wearable: OR 0.66, 95% CI 0.54-0.81). Furthermore, higher wearable compliance was negatively associated with agreeableness (OR 0.68, 95% CI 0.56-0.83) and neuroticism (OR 0.85, 95% CI 0.73-0.98). Compliance in the second week of the study could help explain more variance; 62% and 66% of the variance in EMA compliance and wearable compliance, respectively, was explained. Finally, compliance correlated with participants’ self-reflection on the ease of participation, usefulness of our compliance portal, timely resolution of issues, and compensation adequacy, suggesting that these are avenues for improving compliance. Conclusions: We recommend conducting an initial 2-week pilot to measure trait-like compliance and identify participants at risk of long-term noncompliance, performing oversampling based on participants’ individual characteristics to avoid introducing bias in the sample when excluding data based on noncompliance, using an issue tracking portal, and providing special care in troubleshooting to help participants maintain compliance.
AB - Background: Studies that use ecological momentary assessments (EMAs) or wearable sensors to track numerous attributes, such as physical activity, sleep, and heart rate, can benefit from reductions in missing data. Maximizing compliance is one method of reducing missing data to increase the return on the heavy investment of time and money into large-scale studies. Objective: This paper aims to identify the extent to which compliance can be prospectively predicted from individual attributes and initial compliance. Methods: We instrumented 757 information workers with fitness trackers for 1 year and conducted EMAs in the first 56 days of study participation as part of an observational study. Their compliance with the EMA and fitness tracker wearing protocols was analyzed. Overall, 31 individual characteristics (eg, demographics and personalities) and behavioral variables (eg, early compliance and study portal use) were considered, and 14 variables were selected to create beta regression models for predicting compliance with EMAs 56 days out and wearable compliance 1 year out. We surveyed study participation and correlated the results with compliance. Results: Our modeling indicates that 16% and 25% of the variance in EMA compliance and wearable compliance, respectively, could be explained through a survey of demographics and personality in a held-out sample. The likelihood of higher EMA and wearable compliance was associated with being older (EMA: odds ratio [OR] 1.02, 95% CI 1.00-1.03; wearable: OR 1.02, 95% CI 1.01-1.04), speaking English as a first language (EMA: OR 1.38, 95% CI 1.05-1.80; wearable: OR 1.39, 95% CI 1.05-1.85), having had a wearable before joining the study (EMA: OR 1.25, 95% CI 1.04-1.51; wearable: OR 1.50, 95% CI 1.23-1.83), and exhibiting conscientiousness (EMA: OR 1.25, 95% CI 1.04-1.51; wearable: OR 1.34, 95% CI 1.14-1.58). Compliance was negatively associated with exhibiting extraversion (EMA: OR 0.74, 95% CI 0.64-0.85; wearable: OR 0.67, 95% CI 0.57-0.78) and having a supervisory role (EMA: OR 0.65, 95% CI 0.54-0.79; wearable: OR 0.66, 95% CI 0.54-0.81). Furthermore, higher wearable compliance was negatively associated with agreeableness (OR 0.68, 95% CI 0.56-0.83) and neuroticism (OR 0.85, 95% CI 0.73-0.98). Compliance in the second week of the study could help explain more variance; 62% and 66% of the variance in EMA compliance and wearable compliance, respectively, was explained. Finally, compliance correlated with participants’ self-reflection on the ease of participation, usefulness of our compliance portal, timely resolution of issues, and compensation adequacy, suggesting that these are avenues for improving compliance. Conclusions: We recommend conducting an initial 2-week pilot to measure trait-like compliance and identify participants at risk of long-term noncompliance, performing oversampling based on participants’ individual characteristics to avoid introducing bias in the sample when excluding data based on noncompliance, using an issue tracking portal, and providing special care in troubleshooting to help participants maintain compliance.
KW - Adherence
KW - Compliance
KW - Ecological momentary assessment
KW - Mobile phone
KW - Mobile sensing
KW - Research design
KW - Smartphones
KW - Wearables
UR - http://www.scopus.com/inward/record.url?scp=85119278067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119278067&partnerID=8YFLogxK
U2 - 10.2196/22218
DO - 10.2196/22218
M3 - Article
C2 - 34766911
AN - SCOPUS:85119278067
SN - 2291-5222
VL - 9
JO - JMIR mHealth and uHealth
JF - JMIR mHealth and uHealth
IS - 11
M1 - e22218
ER -