Precise estimates of the Higgs mass in heavy supersymmetry

Patrick Draper, Gabriel Lee, Carlos E.M. Wagner

Research output: Contribution to journalArticlepeer-review

Abstract

In supersymmetric models, very heavy stop squarks introduce large logarithms into the computation of the Higgs boson mass. Although it has long been known that in simple cases these logs can be resummed using effective field theory techniques, it is technically easier to use fixed-order formulas, and many public codes implement the latter. We calculate three- and four-loop next-to-next-to-leading-log corrections to the Higgs mass and compare the fixed-order formulas numerically to the resummation results in order to estimate the range of supersymmetry scales where the fixed-order results are reliable. We find that the four-loop result may be accurate up to a few tens of TeV. We confirm an accidental cancellation between different three-loop terms, first observed in S.P. Martin, Phys. Rev. D 75, 055005 (2007), and show that it persists to higher scales and becomes more effective with the inclusion of higher radiative corrections. Existing partial three-loop calculations that include only one of the two cancelling terms may overestimate the Higgs mass. We give analytic expressions for the three- and four-loop corrections in terms of Standard Model parameters and provide a complete dictionary for translating parameters between the SM and the MSSM and the MS̄ and DR̄ renormalization schemes.

Original languageEnglish (US)
Article number055023
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume89
Issue number5
DOIs
StatePublished - Mar 24 2014
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Precise estimates of the Higgs mass in heavy supersymmetry'. Together they form a unique fingerprint.

Cite this